Peshekhonov, V.G., The outlook for gyroscopy, Gyroscopy and Navigation, 2020, no. 11, pp. 193–197.
Raspopov, V.Ya., Micromechanical devices. Tutorial (Mikromekhanicheskie pribory. Uchebnoe posobie), 2nd ed., Tula State University, K.E. Tsiolkovsky Moscow State Technological University, Tula: Grif and K, 2004.
Tulaev, A.T., Styazhkina, A.V., Kozlov, A.S., and Belyaev Ya.V., Technique for designing a micromechanical sensor based on an integrated system model, Informatika, telekommunikatsii i upravlenie, 2021, 14(2), pp. 79–92.
Liu, K., Zhang, W., Chen, W., Li, K., Dai, F., Cui, F., Wu, X., Ma, G., and Xiao Q., TOPICAL REVIEW: The development of micro-gyroscope technology. Journal of Micromechanics and Microengineering, 2009, 19(11), pp. 1–29.
Google Scholar
Koenig, S., Rombach, S., Gutmann, W., Jaeckle, A., Weber, C., Ruf, M., Grolle, D., and Rende, J., Towards a navigation grade Si-MEMS gyroscope. 2019
DGON Inertial Sensors and Systems (ISS), pp. 1–18.
Aaltonen, L. and Halonen, K.A.I., An analog drive loop for a capacitive MEMS gyroscope, Analog Integrated Circuits and Signal Processing. 2010. 63(3), pp. 465–476.
Aaltonen, L., Saukoski, M., Teikari, I., and Halonen, K., Noise analysis of comparator performed sine-to-square conversion, 2006 International Biennial Baltic Electronics Conference, IEEE, 2006, pp. 1–4.
Belyaev, Ya.V., Methods for reducing the sensitivity threshold of a micromechanical gyroscope, Cand. Tech. Sci. Dissertation, St. Peterburg, 2010, 129 p.
Sharma, A., Zaman, M.F., Amini, B., and Ayazi, F., A High-Q In-Plane SOI Tuning Fork Device, Proc. IEEE Conference on Sensors, October 2004, pp. 467–470.
Filimonov, A.B. and Filimonov, N.B., Robust control with “deep” feedback. Proc. XIII All-Russian Conference on Control Problems, VSPU-2019, Moscow, 2019.
Meerov, M.V., Sintez struktur sistem avtomaticheskogo regulirovaniya vysokoi tochnosti (Synthesis of structures of automatic high-accuracy control systems), Moscow: Nauka, 1967.
Chen, F., Li, X., and Kraft, M., Electromechanical sigma–delta modulators force feedback interfaces for capacitive MEMS inertial sensors: A review, IEEE Sensors Journal, 2016, vol. 16, no. 17, pp. 6476–6495.
Article
Google Scholar
Omar, A., Elshennawy, A., Ismail, A., Nagib, M., Elmala, M., and Elsayed, A., New versatile hardware platform for closed-loop gyro evaluation. Proc. Inertial Sensors and Systems 2015
(DGON ISS), 2015.
Google Scholar
Marx, M., Dorigo, D.D., Nessler, S., Rombach, S., and Manoli, Y.A., 27 μW 0.06 mm2 background resonance frequency tuning circuit based on noise observation for a 1.71 mW CT-Delta Sigma MEMS gyroscope readout system with 0.9°/h bias instability, IEEE J. Solid-State Circuits, 2018. 53(1), pp. 174–186.
Article
Google Scholar
Kolumban, G., Frigyik, B., and Kennedy, M.P., Design equations and baseband model for double-sampling phase-locked loop, 6th IEEE Int. Conf. on Electronics, Circuits and Systems. Proc. Vol. 2, 1999, pp. 895–898.
Kuznetsov, N.V., Belyaev, Ya.V., Indeitsev, D.A., Lobachev, M.Yu., Lukin, A.V., Popov, I.A., Yuldashev, M.V., and Yuldashev, R.V., Mathematical simulation of oscillations and information processing control systems in MEMS gyroscopes, XIV All-Russian Multiconference on Control Problems, MKPU-2021, 2021.
Leonov, G.A. and Kuznetsov, N.V., Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations, Cambridge Scientific Publisher: Cambridge, 2014.
Google Scholar
Kuznetsov, N.V., Matveev, A.S., Yuldashev, M.V., and Yuldashev, R.V., Nonlinear analysis of charge-pump phase-locked loop: The hold-in and pull-in ranges, IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(10), pp. 4049–4061.
Article
Google Scholar