Bloesch, M., Omari, S., Hutter, M., and Siegwart, R., Robust visual inertial odometry using a direct EKF-based approach, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 298–304.
Sun, K., Mohta, K., Pfrommer, B., Watterson, M., Liu, S., Mulgaonkar, Y., Taylor, C.J., and Kumar, V., Robust stereo visual inertial odometry for fast autonomous flight, IEEE Robotics and Automation Letters, 2018, vol. 3, no. 2, pp. 965–972.
Article
Google Scholar
Qin, T., Li, P., and Shen, S., VINS-Mono: A robust and versatile monocular visual-inertial state estimator, IEEE Transactions on Robotics, 2018, vol. 34, no. 4, pp. 1004–1020.
Article
Google Scholar
Khattak, S., Papachristos, C., and Alexis, K., Keyframe-based thermal-inertial odometry, Journal of Field Robotics, 2020, vol. 37, no. 4, pp. 552–579.
Article
Google Scholar
Saputra, M.R.U., de Gusmao, P.P.B., Lu, C.X., Almalioglu, Y., Rosa, S., Chen, C., Wahlstroem, J., Wang, W., Markham, A., and Trigoni, N., DeepTIO: A deep thermal-inertial odometry with visual hallucination, IEEE Robotics and Automation Letters, 2020, vol. 5, no. 2.
Zhao, S., Wang, P., Zhang, H., Fang, Z., and Scherer, S., TP-TIO: A robust thermal-inertial odometry with deep thermalpoint, in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Dickmann, J., Klappstein, J., Hahn, M., Appen-rodt, N., Bloecher, H., Werber, K., and Sailer, A., Automotive radar – The key technology for autonomous driving: From detection and ranging to environmental understanding, in 2016
IEEE Radar Conference (RadarConf).
Doer, C. and Trommer, G.F., Radar inertial odometry with online calibration, in 2020 European Navigation Conference (ENC), 2020, pp. 1–10.
Doer, C. and Trommer, G.F., Yaw aided radar inertial odometry using Manhattan world assumptions, in 28th St. Petersburg International Conference on Integrated Navigation Systems (ICINS), 2021.
Kramer, A., Stahoviak, C., Santamaria-Navarro, A., Aghamohammadi, A.-A., and Heckman, C., Radar-inertial ego-velocity estimation for visually degraded environments, in IEEE International Conference on Robotics and Automation, 2020.
Doer, C. and Trommer, G.F., An EKF-based approach to radar inertial odometry, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2020, pp. 152–159.
Lu, C.X., Saputra, M.R.U., Zhao, P., Almalioglu, Y., de Gusmao, P.P.B., Chen, C., Sun, K., Trigoni, N., and Markham, A., Milliego: Single-chip mmWave radar aided egomotion estimation via deep sensor fusion, in Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Ser. SenSys ’20, 2020.
Quist, E.B. and Beard, R.W., Radar odometry on fixed-wing small unmanned aircraft, IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 1, pp. 396–410.
Article
Google Scholar
Cen, S.H. and Newman, P., Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions, in IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 1–8.
Aldera, R., De Martini, D., Gadd, M., and Newman, P., Fast radar motion estimation with a learnt focus of attention using weak supervision, in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 1190–1196.
Park, Y. S., Shin, Y. S., and Kim, A., Pharao: Direct radar odometry using phase correlation, in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 2617–2623.
Almalioglu, Y., Turan, M., Lu, C.X., Trigoni, N., and Markham, A., Milli-RIO: Ego-motion estimation with low-cost millimetre-wave radar, IEEE Sensors Journal, 2021, vol. 21, no. 3, pp. 3314–3323.
Article
Google Scholar
Rapp, M., Barjenbruch, M., Dietmayer, K., Hahn, M., and Dickmann, J., A fast probabilistic ego-motion estimation framework for radar, in 2015 European Conference on Mobile Robots (ECMR), 2015, pp. 1–6.
Kellner, D., Barjenbruch, M., Klappstein, J., Dickmann, J., and Dietmayer, K., Instantaneous ego-motion estimation using Doppler radar, in Conference on Intelligent Transportation Systems (ITSC 2013), IEEE, 2013, pp. 869–874.
Doer, C. and Trommer, G.F., Radar visual inertial odometry and radar thermal inertial odometry: Robust navigation even in challenging visual conditions, in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
Sola, J., Quaternion kinematics for the error-state KF, 2017.
Roumeliotis, S.I. and Burdick, J.W., Stochastic cloning: A generalized framework for processing relative state measurements, in Proc. 2002 IEEE International Conference on Robotics and Automation, 2002.
Fischler, M.A. and Bolles, R.C., Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 1981.
Ghilani, C.D., Adjustment Computations: Spatial Data Analysis, Hoboken, New Jersey: John Wiley & Sons, 2017.
Book
Google Scholar
Delmerico, J. and Scaramuzza, D., A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots, in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 2502–2509.
Umeyama, S., Least-squares estimation of transformation parameters between two point patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, vol. 13, no. 4, pp. 376–380.
Article
Google Scholar
Zhang, Z. and Scaramuzza, D., A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.
Guennebaud, G., Jacob, B., et al., Eigen v3, http://eigen.tuxfamily.org, 2010.