Skip to main content

Gyroscope on de Broglie Waves: Intricate Things in Simple Words


The paper addresses the operating principles of a gyroscopic device of a new type: a gyroscope on de Broglie waves. The sensitive element of such a gyroscope is an atomic interferometer, whose main components are described and the technical challenges of its development are discussed. The target audience of this paper is the readers who do not have a profound knowledge of the quantum physics.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. In fact, after coherent splitting, each atom (atomic wavepacket) moves along different trajectories simultaneously. When a beam is split according to the states \(\left| 1 \right\rangle \) and \(\left| 2 \right\rangle \), each atom transits into a coherent superposition of the states \(\left| 1 \right\rangle \) and \(\left| 2 \right\rangle \), either of which it can take with a 50% probability. This effect is paradoxical in terms of classical physics and can be misunderstood by a neophyte reader. That is why the authors, in their attempt to make the work as transparent as possible, intentionally explain the process of atomic beams splitting in the AI in a more clear way, although not absolutely correct

  2. The readers should understand that Fig. 7 shows an illustrative schematic image created for better perception, rather than a real experimental pattern, because in a real experiment, like in any AI, there is superposition of atoms which cannot be observed without destroying it.


  1. Bohnenberger, J.G.F., Beschreibung einer Maschine zur Erläuterung der Geseze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren, Tübinger Blätter für Naturwissenschaften und Arzneikunde, 1817, 3, s. 72–83. museum/item_view.cfm?cid=5&scid=12&iid=24. Cited April 05, 2021

  2. The Machine of Bohnenberger, ION Virtual Museum. Cited April 05, 2021.

  3. Bouyer, P., The centenary of Sagnac effect and its applications: From electromagnetic to matter waves, Gyroscopy and Navigation, 2014, vol. 5, no. 1, pp. 20–26.

    Article  Google Scholar 

  4. Macek, W. and Davis, D., Rotation rate sensing with traveling-wave ring lasers, Applied Physics Letters, 1963, vol. 2, no. 3, pp. 67–68.

    Article  Google Scholar 

  5. Vali, V. and Shorthill, R., Fiber Ring Interferometer, Applied Optics, 1976, vol. 15, pp. 1099–1100.

    Article  Google Scholar 

  6. Malykin, G.B., The Sagnac effect: correct and incorrect explanations, Physics-Uspekhi, 2000, vol. 43, no. 12, pp. 1229–1252.

    MathSciNet  Article  Google Scholar 

  7. de Broglie, L., Recherches sur la théorie de quanta, Thèse de doctoral, Paris: Masson et Cie, 1924.

  8. de Broglie, L., Ondes at quanta, C.R. Acad. Sci., 1923, vol. 177, pp. 507–510.

    Google Scholar 

  9. Peshekhonov, V.G., The outlook for gyroscopy, Gyroscopy and Navigation, 2020, vol. 11, no. 3, pp. 193–197.

    Article  Google Scholar 

  10. Mach-Zehnder interferometer, Cited April 20, 2021.

  11. Landau, L.D., Akhiezer, A.I., and Lifshits, E.M., Kurs obshchei fiziki. Mekhanika i molekulyarnaya fizika (General Physics. Mechanics and Molecular Physics. Coursebook), Moscow: Nauka, 1965.

  12. Metcalf, H. J., and van der Straten, P., Laser cooling and trapping of neutral atoms, The Optics Encyclopedia: Basic Foundations and Practical Applications, 2007,

  13. Balykin, V.I., Atom optics and its applications, Herald of the Russian Academy of Sciences, 2011, vol. 81, no. 2, pp. 91–100.

    Article  Google Scholar 

  14. Zeeman, P., The effect of magnetisation on the nature of light emitted by a substance, Nature, 1897. vol. 55, no. 1424, p. 347.

    Article  Google Scholar 

  15. Bohr, N., On the effect of electric and magnetic fields on spectral lines, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1914, vol. 27, no. 159, pp. 506–524.

    Article  Google Scholar 

  16. Raman, C.V., A new radiation, Indian Journal of Physics, 1928, vol. 2, pp. 387–398.

    Google Scholar 

  17. Peshekhonov, V.G., Stepanov, O.A., Avgustov, L.I., Blazhnov, B.A. et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Means for Measuring the Parameters of the Earth’s Gravity Field), Peshekho-nov, V.G., Ed., St. Petersburg: TsNII Elektropribor, 2017.

  18. Müntinga, H. et al., Interferometry with Bose-Einstein condensates in microgravity, Physical Review Letters, 2013, vol. 110, no. 9, p. 093602.

    Article  Google Scholar 

  19. Borde, C.J., Atomic interferometry with internal state labeling, Physics Letters A, 1989, vol. 140, pp. 10–12.

    Article  Google Scholar 

  20. Takase, K., Precision rotation rate measurements with a mobile atom interferometer, Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2008.

  21. Fang, B., Dutta, I., et al., Metrology with atom interferometry: Inertial sensors from laboratory to field applications, Journal of Physics Conference Series, 8th Symposium on Frequency Standards and Metrology 2015, 2016, vol. 723, p. 012049.

  22. El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya. Obshchie voprosy spektroskopii (Atomic and Molecular Spectroscopy: General Issues), Moscow: URSS, 2006.

  23. Francium. Popular Library of Chemical Elements [In Russian]. Cited April 05, 2021.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to B. S. Rivkin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronov, A.S., Rivkin, B.S. Gyroscope on de Broglie Waves: Intricate Things in Simple Words. Gyroscopy Navig. 12, 195–203 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Sagnac effect
  • gyroscope on de Broglie waves
  • atomic interferometer
  • magneto-optical trap
  • “laser whiskbroom”
  • Raman excitation