Abstract
The paper considers the results of an analytical study of the errors in various scalar calibration algorithms for 3D sensors of a vector physical measurand. Practical recommendations for the implementation of the calibration algorithm are given. The results are confirmed by mathematical simulation.
Similar content being viewed by others
REFERENCES
Lakoza, S.L. and Meleshko, V.V., Scalar calibration of low- and medium-accuracy grade accelerometers, Radiooptika, 2015, no. 1, pp. 9–28.
Zikmund, A. and Ripka, P., Scalar calibration of 3D coil system, Journal of Electrical Engineering, 2010, vol. 61, no. 7/s, pp. 39–41.
Vasilyuk, N.N., Calibration of the coefficients of the linear model of an integral magnetometer through the use of measurements of a two-axis gyroscope, Giroskopiya i navigatsiya, 2019, vol. 27, no. 1(104), pp. 107–126.
Wu, Q., Wu, R., Han, F., and Zhang, R., A three-stage accelerometer self-calibration technique for space-stable inertial navigation systems, Sensors, 2018, vol. 18, no. 9, 2888.
Vodicheva, L.V. and Parysheva, Yu.V. Estimating the Accuracy Parameters of Sensors in a Strapdown Inertial Measurement Unit with the Use of a Relatively Coarse Turntable, Gyroscopy and Navigation, 2019, vol. 10, no. 4, pp. 303–312.
Izmailov, E.A., Lepe, S.N., Molchanov, A.V., and Polikovskii, E.F., Scalar calibration and balancing of strapdown inertial navigation systems, XV Sankt-Peterburgskaya mezhd. konf. po integrirovannym navigatsionnym sistemam (15th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: Elektropribor, 2008, pp. 145–154.
Avrutov, V.V., Golovach, S.V., and Mazepa, T.Yu., On scalar calibration of an inertial measurement unit, 19 th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2012, pp. 117–121.
Egorov, Yu.G. et al., Iterative procedure for calibration of SINS sensitive elements, Aviakosmicheskoye priborostroyeniye, 2018, no. 2, pp. 3–17.
Akimov, P.A., Derevyankin, A.V., and Matasov, A.I., Garantiruyushchii podkhod i l1-approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh, (Guaranteeing Spproach and l1-approximation in SINS Parameter Estimation Problems during Bench Tests), Moscow: Izdatel’stvo Moskovskogo universiteta, 2012.
Bonnet, S., Bassompierre, C., Godin, C., Lesecq, S., and Barraud, A., Calibration methods for inertial and magnetic sensors, Sensors and Actuators A: Physical, 2009, 156, pp. 302–311.
Cheng Chi, Jun-Wei Lv, and Dan Wang, Calibration of triaxial magnetometer with ellipsoid fitting method, IOP Conf. Series: Earth and Environmental Science, 2019, 237.
Jiakun Li, Kuangi-shu, and Heng Zhang, An efficient method for tri-axis magnetometer calibration, IEEE SmartWorld-UIC-ATC-SCALCOM-IOP-SCI, 2019, pp. 654–660.
Pieniazek, J., Ellipsoid multi-axial sensor calibration with temperature compensation, IEEE 5 th International Workshop on Metrology for AeroSpace, 2019, pp. 70–75.
Crassidis, J.L. and Cheng, Y., Three-Axis Magnetometer Calibration Using Total Least Squares, AIAA SciTech Forum, 2020.
Nesterov, V.N., Theoretical foundations for measuring the components of vector multicomponent physical quantities, Izmeritel’naya tekhnika, 2004, no.7, pp. 12–16.
Pilu, M., Fitzgibbon, A.W., and Fisher, R.B., Ellipse-specific direct least-square fitting, IEEE Proc. Int. Conf. on Image Processing, 1996, vol. 3, pp. 599–602.
Ventzel, E.S., Teoriya veroyatnostei: Uchebnik (Probability theory: Textbook), Moscow: Yustitsiya, 2018.
Kryanev, A.V. and Luchkin, G.V., Matematicheskiye metody obrabotki neopredelennykh dannykh (Mathematical methods for processing undefined data), 2nd ed., rev., Moscow: Fizmatlit, 2006.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Egorov, Y.G., Popov, E.A. Scalar Calibration of a Vector Meter: Error Analysis. Gyroscopy Navig. 12, 17–26 (2021). https://doi.org/10.1134/S2075108721010053
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2075108721010053