Skip to main content
Log in

Scalar Calibration of a Vector Meter: Error Analysis

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper considers the results of an analytical study of the errors in various scalar calibration algorithms for 3D sensors of a vector physical measurand. Practical recommendations for the implementation of the calibration algorithm are given. The results are confirmed by mathematical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Lakoza, S.L. and Meleshko, V.V., Scalar calibration of low- and medium-accuracy grade accelerometers, Radiooptika, 2015, no. 1, pp. 9–28.

  2. Zikmund, A. and Ripka, P., Scalar calibration of 3D coil system, Journal of Electrical Engineering, 2010, vol. 61, no. 7/s, pp. 39–41.

  3. Vasilyuk, N.N., Calibration of the coefficients of the linear model of an integral magnetometer through the use of measurements of a two-axis gyroscope, Giroskopiya i navigatsiya, 2019, vol. 27, no. 1(104), pp. 107–126.

  4. Wu, Q., Wu, R., Han, F., and Zhang, R., A three-stage accelerometer self-calibration technique for space-stable inertial navigation systems, Sensors, 2018, vol. 18, no. 9, 2888.

    Article  Google Scholar 

  5. Vodicheva, L.V. and Parysheva, Yu.V. Estimating the Accuracy Parameters of Sensors in a Strapdown Inertial Measurement Unit with the Use of a Relatively Coarse Turntable, Gyroscopy and Navigation, 2019, vol. 10, no. 4, pp. 303–312.

    Article  Google Scholar 

  6. Izmailov, E.A., Lepe, S.N., Molchanov, A.V., and Polikovskii, E.F., Scalar calibration and balancing of strapdown inertial navigation systems, XV Sankt-Peterburgskaya mezhd. konf. po integrirovannym navigatsionnym sistemam (15th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: Elektropribor, 2008, pp. 145–154.

  7. Avrutov, V.V., Golovach, S.V., and Mazepa, T.Yu., On scalar calibration of an inertial measurement unit, 19 th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2012, pp. 117–121.

  8. Egorov, Yu.G. et al., Iterative procedure for calibration of SINS sensitive elements, Aviakosmicheskoye priborostroyeniye, 2018, no. 2, pp. 3–17.

  9. Akimov, P.A., Derevyankin, A.V., and Matasov, A.I., Garantiruyushchii podkhod i l1-approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh, (Guaranteeing Spproach and l1-approximation in SINS Parameter Estimation Problems during Bench Tests), Moscow: Izdatel’stvo Moskovskogo universiteta, 2012.

  10. Bonnet, S., Bassompierre, C., Godin, C., Lesecq, S., and Barraud, A., Calibration methods for inertial and magnetic sensors, Sensors and Actuators A: Physical, 2009, 156, pp. 302–311.

    Article  Google Scholar 

  11. Cheng Chi, Jun-Wei Lv, and Dan Wang, Calibration of triaxial magnetometer with ellipsoid fitting method, IOP Conf. Series: Earth and Environmental Science, 2019, 237.

  12. Jiakun Li, Kuangi-shu, and Heng Zhang, An efficient method for tri-axis magnetometer calibration, IEEE SmartWorld-UIC-ATC-SCALCOM-IOP-SCI, 2019, pp. 654–660.

  13. Pieniazek, J., Ellipsoid multi-axial sensor calibration with temperature compensation, IEEE 5 th International Workshop on Metrology for AeroSpace, 2019, pp. 70–75.

  14. Crassidis, J.L. and Cheng, Y., Three-Axis Magnetometer Calibration Using Total Least Squares, AIAA SciTech Forum, 2020.

    Book  Google Scholar 

  15. Nesterov, V.N., Theoretical foundations for measuring the components of vector multicomponent physical quantities, Izmeritel’naya tekhnika, 2004, no.7, pp. 12–16.

  16. Pilu, M., Fitzgibbon, A.W., and Fisher, R.B., Ellipse-specific direct least-square fitting, IEEE Proc. Int. Conf. on Image Processing, 1996, vol. 3, pp. 599–602.

  17. Ventzel, E.S., Teoriya veroyatnostei: Uchebnik (Probability theory: Textbook), Moscow: Yustitsiya, 2018.

  18. Kryanev, A.V. and Luchkin, G.V., Matematicheskiye metody obrabotki neopredelennykh dannykh (Mathematical methods for processing undefined data), 2nd ed., rev., Moscow: Fizmatlit, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Egorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, Y.G., Popov, E.A. Scalar Calibration of a Vector Meter: Error Analysis. Gyroscopy Navig. 12, 17–26 (2021). https://doi.org/10.1134/S2075108721010053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721010053

Keywords:

Navigation