Advertisement

Gyroscopy and Navigation

, Volume 5, Issue 4, pp 245–256 | Cite as

Using the method of elementary balances for analysis and synthesis of thermal control system for FOG SINS based on Peltier modules

  • V. E. DzhashitovEmail author
  • V. M. Pankratov
Article

Abstract

The paper is devoted to analysis and synthesis of bidirectional thermal control system (TCS) of fiber-optic gyros (FOG) and FOG-based strapdown inertial navigation systems (SINS) using the method of elementary balances. Application of Peltier modules is proposed and justified in the system. Mathematical models for FOG-TCS, SINS-TCS dynamic systems are constructed and investigated, supporting software is developed, system parameters are selected, performance of dynamic systems under complicated thermal actions is estimated.

Keywords

Thermal Insulation Thermal Sensor Preset Temperature Strapdown Inertial Navigation System Elementary Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volokonno-opticheskie datchiki. Vvodnyi kurs dlya inzhenerov i nauchnykh rabotnikov (Fiber-Optic Sensors. Introductory Course for Engineers and Researchers), Udd, E., Ed., Moscow: Tekhnosfera, 2008, ISBN 978-5-94836-191-8.Google Scholar
  2. 2.
    Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E. et al., Navigation-grade interferometric fiber optical gyroscope, 14th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2007, pp. 138–143.Google Scholar
  3. 3.
    Kolevatov, A.P., Nikolaev, S.G., Andreev, A.G., Ermakov, V.S. et al., Progress in the development of strapdown inertial navigation systems on fiber-optic gyroscopes, 16th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2009, pp. 12–17.Google Scholar
  4. 4.
    Meshkovsky, I.K., Strigalyov, V.E., Deineka, G.B., Peshekhonov, V.G., Volynsky, D.V., and Untilov, A.A., A three-axis fiber-optic gyro. Development and test results, 18th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2011, pp. 7–12.Google Scholar
  5. 5.
    Lefevre, H.C., The fiber-optic gyroscope: Achievement and perspective, Gyroscopy and Navigation, 2012, vol. 3. no. 4, pp. 223–226.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dranitsyna, E.V. et al., Reducing the effect of temperature variations on FOG output signal, Gyroscopy and Navigation, 2013, vol. 4, no. 2, pp. 92–97.CrossRefGoogle Scholar
  7. 7.
    Dzhashitov, V.E. and Pankratov, V.M., Datchiki, pribory i sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii (Airspace and Marine Sensors, Devices, and Systems under Thermal Actions), Peshekhonov, V.G., Ed., St. Petersburg: Elektropribor, 2005.Google Scholar
  8. 8.
    Dzhashitov, V.E., Pankratov, V.M., and Golikov, A.V., Obshchaya i prikladnaya teoriya giroskopov s primeneniem komp’yuternykh tekhnologii (General and Applied Theory of Gyros with Applications of Computer Technology), Peshekhonov, V.G., Ed., St. Petersburg: Elektropribor, 2010.Google Scholar
  9. 9.
    Dzhashitov, V.E. et al., Reducing thermal sensitivity of fiber-optic gyros, Gyroscopy and Navigation, 2013, vol. 3, no. 1, pp. 56–65.CrossRefGoogle Scholar
  10. 10.
    Dzhashitov, V.E., Hierarchical thermal models of FOG-based strapdown inertial navigation system, Gyroscopy and Navigation, 2014, vol. 5, no. 3, pp. 160–171.CrossRefGoogle Scholar
  11. 11.
    Volyntsev, A.A. et al., The high-accuracy gyroscopic instruments for the attitude control and stabilization systems of spacecrafts and orbital space stations, 10th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2003, pp. 317–325.Google Scholar
  12. 12.
    Barbure, N., Connelly, I., Gilmore, I., Greiff, P., Kourepenis, A., and Weinberg, M., Micro-electromechanical instrument and systems development at Draper laboratory, III St. Petersburg International Conference on Gyroscopic Technology and Navigation, St. Petersburg: Elektropribor, 1996, pp. 3–10.Google Scholar
  13. 13.
    Dul’nev, G.N., Parfenov, V.G., and Sigalov, A.V., Metody rascheta teplovogo rezhima priborov (Methods of Calculating the Device Thermal Mode), Moscow: Radio i Svyaz’, 1990.Google Scholar
  14. 14.
    Ingberman, M.I., Fromberg, E.M., and Graboi, L.P., Termostatirovanie v tekhnike svyazi (Thermal Control in Communication Technology), Moscow: Svyaz’, 1979.Google Scholar
  15. 15.
    Shuster, H., Deterministic Chaos: Introduction, 2006.Google Scholar
  16. 16.
    Dzhashitov, V.E. and Pankratov, V.M., On the possibility of deterministic chaos in temperature-disturbed fiber-optic gyros, Giroskopiya i Navigatsiya, 1997, no. 2(17), pp. 7–17.Google Scholar
  17. 17.
    Dzhashitov, V.E. and Pankratov, V.M., Bifurcations and deterministic chaos in thermal drift of fiber-optical gyros, 5th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 1998, pp. 19–26.Google Scholar
  18. 18.
    Dzhashitov, V. E. and Pankratov, V.M., Deterministic chaos in disturbed by temperature fiber-optical inertial sensors, Proceedings of SPIE, 1998, vol. 3726, pp. 101–111.CrossRefGoogle Scholar
  19. 19.
    Dzhashitov, V.E., Pankratov, V.M., and Barulina, M.A., Mathematical models of thermoelastic stress-strain state and scale factor errors of fiber-optic gyro, Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 2, pp. 43–52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Precision Mechanics and Control InstituteRussian Academy of SciencesSaratovRussia

Personalised recommendations