Advertisement

Gyroscopy and Navigation

, Volume 5, Issue 4, pp 213–218 | Cite as

Static balancing of metal resonators of cylindrical resonator gyroscopes

  • M. A. BasarabEmail author
  • B. S. Lunin
  • V. A. Matveev
  • E. A. Chumankin
Article

Abstract

A technique based on electrochemical etching of metal is suggested for balancing the first four harmonics of nonuniform mass distribution in a metal cylindrical toothless resonator for a cylindrical resonator gyroscope (CRG). An algorithm for removing mass from the resonator surface has been designed with allowance made for analytically calculated angle and depth of the resonator inclined immersion into an electrochemical bath and its rotation about the cylinder axis of symmetry.

Keywords

Electrochemical Etching Unbalanced Mass Resonator Surface Circumferential Angle Vibratory Gyroscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynch, D.D., Vibration-induced drift in the hemi-spherical resonator gyro, Proc. Annual Meeting of the Institute of Navigation, 23–25 June, 1987, Dayton, Ohio, pp. 34–37.Google Scholar
  2. 2.
    Zhbanov, Yu.K. and Zhuravlev, V.F., On balancing of the wave solid-state gyroscope, Izvestiia RAN, Mekhanika tverdogo tela, 1998, no. 4, pp. 4–16.Google Scholar
  3. 3.
    Zhbanov, Yu.K. and Kalenova, N.V., Surface debalance of the wave solid-state gyroscope, Izvestiia RAN, Mekhanika tverdogo tela, 2001, no. 3, pp. 11–18.Google Scholar
  4. 4.
    Egarmin, N.E. and Yurin, V.E., Introduction to Theory of Vibratory Gyroscopes, Moscow: Binom, 1993.Google Scholar
  5. 5.
    Rozelle, D.M., The hemispherical resonator gyro: from wineglass to the planets, Spaceflight Mechanics, 2009, vol. 134, AAS09–176.Google Scholar
  6. 6.
    Bodunov, B.P., Lopatin, V.M., and Lunin, B.S., A method for balancing resonators of the wave solid-state gyroscope, Russian Federation Inventor’s Certificate, 7G01C 19/56, RU 2147117, 1998.Google Scholar
  7. 7.
    Meyer, D. and Rozelle D., Milli-HRG inertial navigation system, Gyroscopy and Navigation, 2012, vol. 3,is. 4, pp. 227–232.CrossRefGoogle Scholar
  8. 8.
    Jeanroy, A., Bouvet, A., and Remillieux, G., HRG and marine applications, Gyroscopy and Navigation, 2014, vol. 5,is. 2, pp. 67–74.CrossRefGoogle Scholar
  9. 9.
    Chikovani, V.V. and Yatsenko, Yu.A., Investigation of azimuth accuracy measurement with metallic resonator Coriolis vibratory gyroscope, Proc. XVII Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2010, pp. 25–30.Google Scholar
  10. 10.
    Matveev, V.A., Lunin, B.S., Basarab, M.A., and Chumankin, E.A., Balancing of metal resonators for low-accuracy and middle-accuracy wave solid-state gyroscopes, Nauka i obrazovanie. Elektronnoe nauchnotekhnicheskoe izdanie, 2013, no. 06. DOI: 10.7463/0613.0579179.Google Scholar
  11. 11.
    Harris, J.W. and Stocker, H., Handbook of Mathematics and Computational Science, 1998, New York: Springer-Verlag, pp. 103–104.CrossRefzbMATHGoogle Scholar
  12. 12.
    Rosebury, F., Handbook of Electron Tube and Vacuum Techniques. Addison-Wesley, 1965.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. A. Basarab
    • 1
    Email author
  • B. S. Lunin
    • 2
  • V. A. Matveev
    • 1
  • E. A. Chumankin
    • 3
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Temp-Avia Scientific and Production EnterpriseArzamasRussia

Personalised recommendations