Skip to main content
Log in

Boride Layers on Sverker 3 Steel: Kinetic Modeling, Experimental Characterization, and Validation

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The kinetic modeling, based on solving the mass balance equations at the two diffusion fronts, was considered to investigate boron diffusion and the formation of dual boride layers (FeB + Fe2B) on Sverker 3 steel. Experimentally, the morphology of the boride layers was examined using scanning electron microscopy (SEM), allowing measurement of the layers' thicknesses. Phase analysis was performed using X-ray diffraction (XRD) to identify the nature of the phases. To analyze the layers’ growth kinetics over the treatment time at a given temperature, two unitless parameters were sought. The boron diffusion coefficients in both phases were evaluated in the range of 900 to 1000°C, and the values of boron activation energies in FeB and Fe2B were deduced. This model was experimentally verified by considering three boriding conditions: 975°C for 10 h, and 1050°C for 5 and 7 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kulka, M., in Current Trends in Boriding. Engineering Materials, Cham: Springer, 2019.

    Book  Google Scholar 

  2. Kulka, M., Makuch, N., Pertek, A., and Maldzinski, L., J. Solid State Chem., 2014, vol. 199, p. 196.

    Article  Google Scholar 

  3. Belkin, P.N. and Kusmanov, S.A., Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 1.

    Article  Google Scholar 

  4. Kartal, G., Timur, S., and Arslan, C., J. Electron. Mater., 2005, vol. 34, p. 1538.

    Article  CAS  Google Scholar 

  5. Rodrıguez Cabeo, E., Laudien, G., Biemer, S., Rie, K.T., and Hoppe, S., Surf. Coat. Technol., 1999, vols. 116–119, p. 229.

    Article  Google Scholar 

  6. Keddam, M., Chegroune, R., Kulka, M., Makuch, N., Panfil, D., Siwak, P., and Taktak, S., Trans. Indian Inst. Met., 2018, vol. 71, p. 79.

    Article  CAS  Google Scholar 

  7. Campos, I., Ramírez, G., Figueroa, U., and Villa Velázquez, C., Surf. Eng., 2007, vol. 23, no. 3, p. 216.

    Article  CAS  Google Scholar 

  8. Ortiz-Domínguez, M. and Keddam, M., Prot. Met. Phys. Chem. Surf., 2023, vol. 59, p. 206.

    Article  Google Scholar 

  9. Anthymidis, K.G., Stergioudis, E., and Tsipas, D.N., Mater. Lett., 2001, vol. 51, p. 156.

    Article  CAS  Google Scholar 

  10. Keddam, M., Elias-Espinosa, M., Ortiz-Domínguez, M., Simón-Marmolejo, I., and Zuno-Silva, J., Int. J. Surf. Sci. Eng., 2017, vol. 11, no. 6, p. 563.

    Article  CAS  Google Scholar 

  11. Kolja, A. and Marion, M., Prod. Eng., 2014, vol. 8, p. 131.

    Article  Google Scholar 

  12. Keddam, M. and Jurči, P., Met. Sci. Heat Treat., 2021, vol. 63, p. 430.

    Article  CAS  Google Scholar 

  13. Villa Velázquez-Mendoza, C.I., Rodríguez-Mendoza, J.L., Ibarra-Galván, V., Hodgkins, R.P., López Valdivieso, A., Serrato-Palacios, L.L., Leal-Cruz, A.L., and Ibarra-Junquera, V., Int. J. Surf. Sci. Eng., 2014, vol. 8, no. 1, p. 71.

    Article  Google Scholar 

  14. Campos, I., Islas, M., Ramírez, G., Villa Velázquez and Mota, C., Appl. Surf. Sci., 2007, vol. 253, p. 6226.

    Article  CAS  Google Scholar 

  15. Nait Abdellah, Z., Boumaali, B., and Keddam, M., Mater. Test., 2021, vol. 63, no. 12, p. 1136.

    Article  Google Scholar 

  16. Campos-Silva, I., Flores-Jiménez, M., Bravo-Bárcenas, D., Balmori-Ramírez, H., Andraca-Adame, J., Martínez-Trinidad, J., and Meda-Campaña, J.A., Surf. Coat. Technol., 2017, vol. 309, p. 155.

    Article  CAS  Google Scholar 

  17. Keddam, M. and Kulka, M., Met. Sci. Heat Treat., 2020, vol. 61, p. 756.

    Article  CAS  Google Scholar 

  18. Campos, I., Torres, R., Ramírez, G., Ganem, R., and Martínez, J., Appl. Surf. Sci., 2006, vol. 252, p. 8662.

    Article  CAS  Google Scholar 

  19. Delai, O., Xia, C., and Shiqiang, L., J. Mater. Res. Technol., 2021, vol. 11, p. 1272.

    Article  Google Scholar 

  20. Mansour, S., Keddam, M., and Boumaali, B., Koroze Ochr. Mater., 2022, vol. 66, p. 40.

    Article  CAS  Google Scholar 

  21. Ptačinová, J., Gabalcová, Z., Ďurica, J., Drienovský, M., Keddam, M., and Jurči, P., Mater. Test., 2023, vol. 65, no. 4, p. 578.

    Article  Google Scholar 

  22. Doñu Ruiz, M.A., López Perrusquia, N., Sánchez Huerta, D., Torres San Miguel, C.R., Urriolagoitia Calderón, G.M., Cerillo Moreno, E.A., and Cortes Suarez, J.V., Thin Solid Films, 2015, vol. 596, p. 147.

    Article  Google Scholar 

  23. Benyakoub, K., Keddam, M., Boumaali, B., and Kulka, M., Coatings, 2023, vol. 13, p. 1132.

    Article  CAS  Google Scholar 

  24. Yu, L.G., Chen, X.J., Khor, K.A., and Sundararajan, G., Acta Mater., 2005, vol. 53, no. 8, p. 2361.

    Article  CAS  Google Scholar 

  25. Okamoto, H., J. Phase Equilib. Diffus., 2004, vol. 25, p. 297.

    Article  CAS  Google Scholar 

  26. Press, W.H., Flannery, B.P., and Teukolsky, S.A., Numerical Recipes in Pascal: The Art of Scientific Computing, Cambridge: Cambridge Univ. Press, 1989.

    Google Scholar 

  27. Kunst, H. and Schaaber, O., Haerterei-Tech. Mitt., 1967, vol. 22, p. 1.

    CAS  Google Scholar 

  28. Villars, P. and Calvert, L.D., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Metals Park, OH: American Society for Metals, 1989, vol. 1.

    Google Scholar 

  29. García-Léon, R.A., Martínez-Trinidad, J., Campos-Silva, I., and Wong-Angel, W., Rev. DYNA, 2020, vol. 87, no. 213, p. 34.

    Article  Google Scholar 

  30. Erdoğan, A., Surf. Coat. Technol., 2019, vol. 357, p. 886.

    Article  Google Scholar 

  31. Taktak, S. and Tasgetiren, S., J. Mater. Eng. Perform., 2006, vol. 15, p. 570.

    Article  CAS  Google Scholar 

  32. Türkmen, I., Yalamaç, E., and Keddam, M., Surf. Coat. Technol., 2019, vol. 377, p. 124888.

    Article  Google Scholar 

  33. Ortiz-Domínguez, M., Gómez-Vargas, O.A., Bárcenas-Castañeda, M., and Castellanos-Escamilla, V.A., Materials, 2022, vol. 15, no. 23, p. 8420.

    Article  Google Scholar 

  34. Su, Z.G., Lv, X.X., An, J., Yang, Y.L., and Sun, S.J., J. Mater. Eng. Perform., 2012, vol. 21, p. 1337.

    Article  CAS  Google Scholar 

  35. Dybkov, V.I., Goncharuk, L.V., Khoruzha, V.G., Meleshevich, K.A., Samelyuk, A.V., and Sidorko, V.R., Solid State Phenom., 2008, vol. 138, p. 181.

    Article  CAS  Google Scholar 

  36. Dybkov, V.I., Defect Diffus. Forum, 2007, vol. 263, p. 183.

    CAS  Google Scholar 

  37. Dybkov, V.I., Lengauer, W., and Barmak, K., J. Alloys Compd., 2005, vol. 398, p. 113.

    Article  CAS  Google Scholar 

  38. Kayali, Y. and Taktak, S., J. Adhes. Sci. Technol., 2015, vol. 29, no. 19, p. 2065.

    Article  CAS  Google Scholar 

  39. Gunes, I., Ulker, S., and Taktak, S., Mater. Des., 2011, vol. 32, no. 4, p. 2380.

    Article  CAS  Google Scholar 

  40. Keddam, M., Hudáková, M., Ptačinová, J., Moravčík, R., Gogola, P., Gabalcová, Z., and Jurči, P., Surf. Eng., 2020, vol. 37, p. 445.

    Article  Google Scholar 

  41. Homolová, V. and Čiripová., L., Adv. Mater. Sci. Eng., 2017, vol. 2017, no. 2017, p. 2703986.

  42. Yamada, K., Ohtani, H., and Hasebe, M., High Temp. Mater. Processes, 2008, vol. 27, no. 4, p. 269.

    Article  CAS  Google Scholar 

  43. Orihel, P., Drienovský, M., Gabalcová, Z., Jurči P., and Keddam, M., Coatings, 2023, vol. 13, no.1, p. 113.

    Article  CAS  Google Scholar 

  44. Makuch, N., Kulka, M., Keddam, M., and Piasecki, A., Materials, 2023, vol. 16, no.1, p. 26.

    Article  CAS  Google Scholar 

  45. Kartal Sireli, G., Yuce, H., Arslan, M., Karimzadehkhoei M., and Timur, S., J. Mater. Eng. Perform., 2023 (in press). https://doi.org/10.1007/s11665-023-07817-5

  46. Sen, S., Sen, U., and Bindal, C., Surf. Coat. Technol., 2005, vol. 191, p. 274.

    Article  CAS  Google Scholar 

  47. Çelik, A.G., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 780.

    Article  Google Scholar 

  48. Kayali, Y. and Mertgenc, E., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 151.

    Article  Google Scholar 

  49. Topuz, P., Çiçek, B., and Akar, O., J. Min. Metall., Sect. B, 2016, vol. 52, no. 1, p. 63.

    CAS  Google Scholar 

  50. Taktak, S., J. Mater. Sci., 2006, vol. 41, p. 7590.

    Article  CAS  Google Scholar 

Download references

Funding

No external funding was provided for this research. The study was conducted as part of the PRFU project, registered under the reference number A11N01UN160420230012. The project received support from the Ministry of Higher Education and Scientific Research of Algeria and was coordinated by the (DGRSDT, Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Keddam.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyakoub, K., Keddam, M., Ptačinová, J. et al. Boride Layers on Sverker 3 Steel: Kinetic Modeling, Experimental Characterization, and Validation. Prot Met Phys Chem Surf 59, 1250–1259 (2023). https://doi.org/10.1134/S2070205123701113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701113

Keywords:

Navigation