Skip to main content
Log in

Structural Сharacteristics, Mechanical Properties, Wear and Oxidation Resistance of Coatings in the Mo–Y–Zr–Si–B System Obtained on Molybdenum by Magnetron Sputtering in the DCMS and HIPIMS Modes

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract—Mo–(Y, Zr)–Si–B coatings were obtained by direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HIPIMS) using composite targets of MoSi2 + 10% MoB and (MoSi2 + 10% MoB) + 20% ZrB2, with the Y segments located in their erosion zone with a total area of 5 and 10 cm2. The structure and composition of the coatings were studied by scanning and transmission electron microscopy, glow discharge optical emission spectroscopy, and XRD. The hardness, elastic modulus, elastic recovery, adhesive strength, and resistance of the coatings to abrasive wear and cyclic impact loading were determined. The oxidation resistance and thermal stability were estimated by heating the coatings to a maximum temperature of 1000°C in a muffle furnace and in a transmission electron microscope column, respectively. It has been established that the Mo–Si–B coating contains the h-MoSi2 phase with preferred orientation in the [110] direction and crystallite size of 75 nm. Alloying of Zr and Y coatings, as well as the transition from DCMS to HIPIMS mode, contributed to the suppression of preferential growth of crystallites, increasing their dispersity and the volume fraction of the amorphous phase, which led to an increase in the crack resistance and adhesive strength of the coatings. The HIPIMS method in coating deposition caused an increase in the hardness and elastic modulus by 10%; resistance to cyclical impact, by 60%; and abrasive resistance, by 20%; it also increased oxidation resistance up to 20%. Mo–Y–Zr–Si–B coatings with the optimal composition demonstrated high thermal stability; the main structural component is the hexagonal phase h-MoSi2; it remained in the temperature range of 20–1000°C and also resulted in a more than ninefold increased oxidation resistance of the Mo substrate at 1000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Perepezko, J.H., Science, 2009, vol. 326, p. 1068.

    Article  CAS  Google Scholar 

  2. Su, R., Liu, L., and Perepezko, J., H., Int. J. Refract. Met. Hard Mater., 2023, vol. 113, p. 106199.

    Article  CAS  Google Scholar 

  3. Zhu, L., Zhu, Y., Ren, X., Zhang, P., Qiao, J., and Feng, P., Surf. Coat. Technol., 2019, vol. 375, p. 773.

    Article  CAS  Google Scholar 

  4. Fu, T., Zhang, Y., Shen, F., Cui, K., Chen, L., Mater. Charact., 2022, vol. 192, p. 112192.

    Article  CAS  Google Scholar 

  5. Wei Li, Jinglian Fan, Yan Fan, Lairong Xiao, and Huichao Cheng, J. Alloys Compd., 2018, vol. 740, p. 711.

    Article  CAS  Google Scholar 

  6. Yanagihara, K., Przybylski, K., and Maruyama, T., Oxid. Met., 1997, vol. 47, p. 277.

    Article  CAS  Google Scholar 

  7. Kiryukhantsev-Korneev, P.V. et al., Russ. J. Non-Ferrous Met., vol. 55, no. 6, p. 645. https://doi.org/10.3103/S106782121406011X

  8. Kiryukhantsev-Korneev, Ph.V., Iatsyuk, I.V., Shvindina, N.V., Levashov, E.A., and Shtansky, D.V., Corros. Sci., 2017, vol. 123, p. 319.

    Article  CAS  Google Scholar 

  9. Kiryukhantsev-Korneev, Ph.V., Sytchenko, A.D., Sviridova, T.A., Sidorenko, D.A., Andreev, N.V., Klechkovskaya, V.V., Polčak, J., and Levashov, E.A., Surf. Coat. Technol., 2022, vol. 442, p. 128141.

    Article  CAS  Google Scholar 

  10. Won June Choi, et al., Int. J. Refract. Met. Hard Mater., 2019, vol. 80, p. 238.

    Article  CAS  Google Scholar 

  11. Zilong Wu, Kanglu Feng, Jiangbo Sha, and Chungen Zhou, Prog. Nat. Sci.: Mater. Int., 2022, vol. 32, no. 6, p. 752.

    Article  CAS  Google Scholar 

  12. Kiryukhantsev-Korneev, F.V., Sytchenko, A.D., Vakhrushev, R.A., et al., Phys. At. Nucl., 2022, vol. 85, p. 2088.

    Article  CAS  Google Scholar 

  13. Zhestkova, B.E. and Terent’eva, V.S., Russ. Metall. (Engl. Transl.), 2010, vol. 1, p. 33.

  14. Pang, J. and Blackwood, D.J., Corros. Sci., 2016, vol. 105, p. 17.

    Article  CAS  Google Scholar 

  15. Totemeier, T.C., Wright, R.N., and Swank, W.D., Intermetallics, 2004, vol. 12, no. 12, p. 1335.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Li, H., Ren, J., and Li, K., Corros. Sci., 2013, vol. 72, p. 150.

    Article  CAS  Google Scholar 

  17. Kuznetsov, S.A., Rebrov, E.V., Mies, M.J.M., de Croon, M.H.J.M., and Schouten, J.C., Surf. Coat. Technol., 2006, vol. 201, p. 971.

    Article  CAS  Google Scholar 

  18. Kudryashov, A.E., et al., Surf. Coat. Technol., 2018, vol. 335, p. 104.

    Article  CAS  Google Scholar 

  19. Zhu, L., Chen, P., Cai, Z., Feng, P., Kang, X., Akhtar, F., and Wang, X., Trans. Nonferrous Met. Soc. China, 2022, vol. 32, no. 3, p. 935.

    Article  CAS  Google Scholar 

  20. Lange, A., Heilmaier, M., Sossamann, T.A., and Perepezko, J.H., Surf. Coat. Technol., 2015, vol. 266, p. 57.

    Article  CAS  Google Scholar 

  21. Perepezko, J.H., Sossaman, T.A., and Taylor, M., J. Therm. Spray Technol., 2017, vol. 26, p. 929.

    Article  CAS  Google Scholar 

  22. Ritt, P., Sakidja, R., and Perepezko, J.H., Surf. Coat. Technol., 2012, vol. 206, p. 4166.

    Article  CAS  Google Scholar 

  23. Shtansky, D.V., et al., Surf. Coat. Technol., 2012, vol. 208, p. 14.

    Article  CAS  Google Scholar 

  24. Kukla, R., Surf. Coat. Technol., 1997, vol. 93, no. 1, p. 1.

    Article  Google Scholar 

  25. Kiryukhantsev-Korneev, Ph.V., Horwat, D., Pierson, J.F., and Levashov, E.A., Tech. Phys. Lett., 2014, vol. 40, p. 614.

    Article  CAS  Google Scholar 

  26. Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Vorotilo, S.A., and Levashov, E.A., Ceram. Int., 2020, vol. 46, no. 2, p. 1775.

    Article  CAS  Google Scholar 

  27. Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., and Gudmundsson, J.T., Thin Solid Films, 2006, vol. 513, p. 1.

    Article  CAS  Google Scholar 

  28. Xie Dong, Wei, L.J., Liu, H.Y., Zhang, K., Leng, Y.X., Matthews, D.T.A., Ganesan, R., and Su, Y.Y., Surf. Coat. Technol., 2022, vol. 442, p. 128192.

    Article  Google Scholar 

  29. Lattemann, M., Ehiasarian, A.P., Bohlmark, J., Persson, P.Å.O., and Helmersson, U., Surf. Coat. Technol., 2006, vol. 200, p. 6495.

    Article  CAS  Google Scholar 

  30. Kiryukhantsev-Korneev, F.V., Russ. J. Non-Ferrous Met., 2014, vol. 55, p. 494. https://doi.org/10.3103/S1067821214050137

    Article  Google Scholar 

  31. Veprek, S., et al., Thin Solid Films, 2005, vol. 476, p. 1.

    Article  CAS  Google Scholar 

  32. Fischer-Cripps, A.C., et al., Surf. Coat. Technol., 2006, vol. 200, p. 5645.

    Article  CAS  Google Scholar 

  33. Zawischa, M., Azri, M.M., Supian, B.M., Makowski, S., Schaller, F., and Weihnacht, V., Surf. Coat. Technol., 2021, vol. 415, p. 127118.

    Article  CAS  Google Scholar 

  34. Musil, J., Research Signpost, 2008, p. 1.

    Google Scholar 

  35. Shtansky, D.V., et al., Phys. Solid State, 2006, vol. 48, p. 1301.

    Article  CAS  Google Scholar 

  36. Tayebi, N., Polycarpou, A.A., and Conry, T.F., J. Mater. Res., 2004, vol. 19, p. 1791. https://doi.org/10.1557/JMR.2004.0233

    Article  CAS  Google Scholar 

  37. Li, J. and Beres, W., Can. Metall. Q., 2007, vol. 46, no. 2, p. 155. https://doi.org/10.1179/cmq.2007.46.2.155

    Article  CAS  Google Scholar 

  38. Kiryukhantsev-Korneev, P.V., Sheveiko, A.N., and Petrzhik, M.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 502.

    Article  CAS  Google Scholar 

  39. Schwarzer, N., Duong, Q.-H., Bierwisch, N., Favaro, G., Fuchs, M., Kempe, P., Widrig, B., and Ramm, J., Surf. Coat. Technol., 2011, vol. 206, no. 6, p. 1327. https://doi.org/10.1016/j.surfcoat.2011.08.051

    Article  CAS  Google Scholar 

  40. Leyland, A. and Matthews, A., Wear, 2000, vol. 246, p. 1.

    Article  CAS  Google Scholar 

  41. Mustafa, M.M.B., Umehara, N., Tokoroyama, T., Murashima, M., Shibata, A., Utsumi, Y., and Moriguchi, H., Tribology Online, 2019, vol 14, no. 5, p. 388.

    Article  Google Scholar 

  42. Kiryukhantsev-Korneev, P.V., Pierson, J.F., Bychkova, M.Y., et al., Tribol. Lett., 2016, vol. 63, p. 44.

    Article  Google Scholar 

  43. Chen, J. and Bull, S., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 3, p. 34001.

    Article  Google Scholar 

  44. Kiryukhantsev-Korneev, Ph.V., Sytchenko, A.D., Potanin, A.Yu., Vorotilo, S.A., and Levashov, E.A., Surf. Coat. Technol., 2020, vol. 403, p. 126373.

    Article  CAS  Google Scholar 

  45. Beake, B.D., Surf. Coat. Technol., 2022, vol. 442, p. 128272. https://doi.org/10.1016/j.surfcoat.2022.128272

    Article  CAS  Google Scholar 

  46. McMaster, S.J., Kosarieh, S., Liskiewicz, T.W., Neville, A., and Beake, B.D., Tribol. Int., 2023, vol. 185, p. 108524. https://doi.org/10.1016/j.triboint.2023.108524

    Article  CAS  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 23-49-00141). P. Feng gratefully acknowledges the financial support from the NSFC Foundation (project 5221101774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Chudarin, F.I., Vakhrushev, R.A. et al. Structural Сharacteristics, Mechanical Properties, Wear and Oxidation Resistance of Coatings in the Mo–Y–Zr–Si–B System Obtained on Molybdenum by Magnetron Sputtering in the DCMS and HIPIMS Modes. Prot Met Phys Chem Surf 59, 933–945 (2023). https://doi.org/10.1134/S2070205123701095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701095

Navigation