Skip to main content
Log in

Characterization and Corrosion Protection Properties of Electrodeposited Zn–Ni–Mn Coatings

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Metal structures degrade significantly due to corrosion during their different uses, where significant amounts of aggressive ions are present. Therefore, anodic metals such as Ni, Mn, and Zn are used as protective agents. In this work, uniform, adherent and corrosion-resistant Zn–Ni–Mn coatings have been prepared by electrodeposition on a Cu substrate from a sulfate bath at room temperature. The effect of Mn2+ ions concentration, [Mn2+], in the bath on the as-prepared samples has been investigated. The nucleation process influenced by the [Mn2+] and applied deposition potentials, E, has been investigated according to the typical nucleation model of Scharifker and Hills (S–H). The analysis results show that both [Mn2+] and E have a significant impact on the nucleation mode of Zn–Ni–Mn coatings. The EDX analysis shows that the codeposition behavior can be described as anomalous with Zn as the major element. The SEM analyses indicate that the electrodeposited coatings exhibit a compact and dense morphology with good uniformity, no cracks, and pyramidal-shaped particles with the particle’s size is Mn content dependent. The XRD investigation shows the coexistence of η-Zn and NiZn3 phases known to contribute in improving the corrosion resistance of Zn–Ni–Mn coatings. Linear polarization plots and electrochemical impedance spectroscopy (EIS) techniques indicate that the optimal sample (Zn55.7–Ni37.7–Mn1.6) presents a high corrosion resistance. This is due, according to the XRD and SEM results to the formation of a protective layer during the corrosion process composed of Zn5(OH)8Cl2 and ZnMn2O4 phases which prevents the progression of corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Dehghani, A., Ghahremani, P., Mostafatabar, A.H., and Ramezanzadeh, B., Biomass Convers. Biorefin., 2022. https://doi.org/10.1007/s13399-022-02893-4.

  2. Coelho, L.-B., Zhang, D.-Y., Van Ingelgem, D., Steckelmacher, A., Nowé, and Terryn., H., npj Mater. Degrad., 2022, vol. 6, no. 1, p. 8. https://doi.org/10.1038/s41529-022-00218-4

    Article  Google Scholar 

  3. Onabuta, Y., et al., Electrochem. Commun., 2022, vol. 138, p. 107291. https://doi.org/10.1016/j.elecom.2022.107291

    Article  CAS  Google Scholar 

  4. Tassaoui, K., et al., Int. J. Corros. Scale Inhib., 2022, vol. 11, no. 1, p. 221. https://doi.org/10.17675/2305-6894-2022-11-1-12

    Article  CAS  Google Scholar 

  5. El Fazazi, A., Ouakki, M., and Cherkaoui, M., J. Bio- Tribo-Corros., 2021, vol. 7, no. 2, p. 1. https://doi.org/10.1007/s40735-021-00482-y

  6. Berger, F., Delhalle, J., and Mekhalif, Z., Electrochim. Acta, 2008, vol. 53, no. 6, p. 2852. https://doi.org/10.1016/j.electacta.2007.10.067

    Article  CAS  Google Scholar 

  7. Bae, S.-H., Oue, S., Taninouchi, Y., Son, I., and Nakano, H., ISIJ Int., 2022, vol. 62, no. 7, p. 1522.

    Article  CAS  Google Scholar 

  8. Aldana-González, J., et al., J. Electrochem. Soc., 2019, vol. 166, no. 6, p. D199. https://doi.org/10.1149/2.0761906jes

    Article  CAS  Google Scholar 

  9. Han, Y., et al., J. Electroanal. Chem., 2021, vol. 882, p. 114993. https://doi.org/10.1016/j.jelechem.2021.114993

    Article  CAS  Google Scholar 

  10. Maniam, K.-K. and Paul, S., Corros. Mater. Degrad., 2021, vol. 2, no. 2, p. 163. https://doi.org/10.3390/cmd2020010

    Article  Google Scholar 

  11. Andarani, P., Alimuddin, H., Yokota, K., Inoue, T., Obaid, S., and Nguyen, M.N., Water (Basel, Switz.), 2021, vol. 13, no. 15, p. 1. https://doi.org/10.3390/w13152113

  12. Faid, H., Mentar, L., Khelladi, M.-R., and Azizi, A., Surf. Eng., 2017, vol. 33, no. 7, p. 529. https://doi.org/10.1080/02670844.2017.1287836

    Article  CAS  Google Scholar 

  13. Barreiros, P.-P. and Pires, M.J.M., Mater. Res. Express, 2020, vol. 7, no. 1, p. 016403. https://doi.org/10.1088/2053-1591/ab59e8

    Article  CAS  Google Scholar 

  14. Guo, J., Guo, X., Wang, S., Zhang, Z., Dong, J., and Peng, L., Appl. Surf. Sci., 2016, vol. 365, p. 31. https://doi.org/10.1016/j.apsusc.2015.12.248

    Article  CAS  Google Scholar 

  15. Akdogan, C., Bakkaloglu, O.-F., Bedir, M., Erdogan, P.-Y., and Yavuz, A., Dig. J. Nanomater. Biostruct., 2022, vol. 17, no. 2, p. 589. https://doi.org/10.15251/DJNB.2022.172.589

    Article  Google Scholar 

  16. Boshkov, N., Surf. Coat. Technol., 2003, vol. 172, no. 11, p. 217. https://doi.org/10.1016/S0257-8972(03)00463-8

    Article  CAS  Google Scholar 

  17. Bailote, L.-D., Ramanauskas, R., and Bartolo-Pérez, P., Corros. Rev., 2000, vol. 18, no. 1, p. 41. https://doi.org/10.1515/CORRREV.2000.18.1.41

    Article  Google Scholar 

  18. Assaf, F.-H., Abou-Krisha, M.-M., Alduaij, O.-K., El-Seidy, A.M.A., and Eissa, A.A., Int. J. Electrochem. Sci., 2015, vol. 10, no. 8, p. 6273.

    Article  CAS  Google Scholar 

  19. Fashu S. and Khan, R., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 1, p. 118. https://doi.org/10.1134/S2070205117010051

    Article  CAS  Google Scholar 

  20. Assaf, F.-H., Abou-krisha, M.-M., Daoush, W.-M., and Eissa, A.A., Corros. Rev., 2018, vol. 36, p. 547.

    Article  CAS  Google Scholar 

  21. Abedini, B., Parvini, N., Yazdani, S., and Magagnin, L., Surf. Coat. Technol., 2019, vol. 372, p. 260. https://doi.org/10.1016/j.surfcoat.2019.05.051

    Article  CAS  Google Scholar 

  22. Toghan, A., Abou-Krisha, M.-M., Assaf, F.-H., and El-Sheref, F., Int. J. Electrochem. Sci., 2021, vol. 16, no. 1, p. 1. https://doi.org/10.20964/2021.01.57

    Article  CAS  Google Scholar 

  23. Fan, X., Sun, S., Xi, D., Liu, Z., Du, J., and Tao, C., Hydrometallurgy, 2012, vol. 127, p. 24. https://doi.org/10.1016/j.hydromet.2012.07.006

    Article  CAS  Google Scholar 

  24. Loukil, N. and Feki, M., Appl. Surf. Sci., 2017, vol. 410, p. 574. https://doi.org/10.1016/j.apsusc.2017.02.075

    Article  CAS  Google Scholar 

  25. Sylla, D., Creus, J., Savall, C., Roggy, O., Gadouleau, M., and Refait, P., Thin Solid Films, 2003, vol. 424, no. 2, p. 171. https://doi.org/10.1016/S0040-6090(02)01048-9

    Article  CAS  Google Scholar 

  26. Scharifker, B., Electrochim. Acta, 1982, vol. 28, no. 2, p. 879.

    Article  Google Scholar 

  27. Darband, G.-B., Aliofkhazraei, M., Dolati, A., and Rouhaghdam, A.S., J. Alloys Compd., 2020, vol. 818, p. 152843. https://doi.org/10.1016/j.jallcom.2019.152843

    Article  CAS  Google Scholar 

  28. Rezaei, M., Tabaian, S.-H., and Haghshenas, D.F., Electrochim. Acta, 2012, vol. 59, p. 360. https://doi.org/10.1016/j.electacta.2011.10.081

    Article  CAS  Google Scholar 

  29. Yuan, Y., Luo, G., and Li, N., RSC Adv., 2021, vol. 11, p. 31526. https://doi.org/10.1039/d1ra04988g

    Article  CAS  Google Scholar 

  30. Basavanna, S. and Arthoba Naik, Y., J. Appl. Electrochem., 2011, vol. 41, no. 5, p. 535. https://doi.org/10.1007/s10800-011-0263-6

    Article  CAS  Google Scholar 

  31. Zandiatashbar, A., et al., Nat. Commun., 2014, vol. 5, p. 1. https://doi.org/10.1038/ncomms4186

    Article  CAS  Google Scholar 

  32. Xiong, Z., Zhong, L., Wang, H., and Li, X., 2D Mater., 2021, p. 1. Xiong, Z., Zhong, L., Wang, H., and Li, X., Materials, 2012, vol. 14, no. 5, p. 1192.

    Article  Google Scholar 

  33. Cheng, K.-H., et al., Adv. Mater. Sci. Eng., 2014, vol. 2014, p. 890814. https://doi.org/10.1155/2014/890814

    Article  CAS  Google Scholar 

  34. Akiyama, T. and Fukushima, H., ISIJ Int., 1992, vol. 32, no. 7, p. 787. https://doi.org/10.2355/isijinternational.32.787

    Article  CAS  Google Scholar 

  35. Byk, T.-V., Gaevskaya, T.-V., and Tsybulskaya, L.S., Surf. Coat. Technol., 2008, vol. 202, p. 5817. https://doi.org/10.1016/j.surfcoat.2008.05.058

    Article  CAS  Google Scholar 

  36. Abedini, B., Parvini Ahmadi, N., Yazdani, S., and Magagnin, L., Trans. Nonferrous Met. Soc. China, 2020, vol. 30, no. 2, p. 548. https://doi.org/10.1016/S1003-6326(20)65234-7

    Article  CAS  Google Scholar 

  37. Farooq, A., Ahmad, S., Hamad, K., and Deen, K.M., Metals, 2022, vol.12, no. 1, p.96. https://doi.org/10.3390/met12010096

    Article  CAS  Google Scholar 

  38. Ramakrishna, K.-S., et al., J. Inorg. Organomet. Polym., Mater., 2021, vol. 31, no. 3, p. 1336. https://doi.org/10.1007/s10904-020-01773-6

    Article  CAS  Google Scholar 

  39. Boudjehem, H., Moumeni, H., Nemamcha, A., Pronkin, S., and Rehspringer, J.-L., J. Appl. Electrochem., 2022, vol. 52, no. 2, p. 217. https://doi.org/10.1007/s10800-021-01615-4

    Article  CAS  Google Scholar 

  40. Savall, C., Rebere, C., Sylla, D., Gadouleau, M., Refait, P., and Creus, J., Mater. Sci. Eng., A, 2006, vol. 430, no. 1, p. 165. https://doi.org/10.1016/j.msea.2006.05.025

    Article  CAS  Google Scholar 

  41. Tsuchiya, Y., Hashimoto, S., Ishibashi, Y., Urakawa, T., Sagiyama, M., and Fukuda, Y., ISIJ Int., 2000, vol. 40, no. 10, p. 1024. https://doi.org/10.2355/isijinternational.40.1024

    Article  CAS  Google Scholar 

  42. Müller, C., Sarret, M., and Andreu, T., J. Electrochem. Soc., 2002, vol. 149, no. 11, p. C600. https://doi.org/10.1149/1.1512668

    Article  CAS  Google Scholar 

  43. Bučko, M., Rogan, J., Stevanović, S.-I., Stanković, S., and Bajat, J.B., Surf. Coat. Technol., 2013, vol. 228, p. 221. https://doi.org/10.1016/j.surfcoat.2013.04.032

    Article  CAS  Google Scholar 

  44. Beltowska-Lehman, E., Ozga, P., Swiatek, Z., and Lupi, C., Surf. Coat. Technol., 2002, vol. 151, p. 444. https://doi.org/10.1016/S0257-8972(01)01614-0

    Article  Google Scholar 

  45. Giridhar, J. and van Ooij, W.-J., Surf. Coat. Technol., 1992, vol. 52, no. 1, p. 17. https://doi.org/10.1016/0257-8972(92)90367-J

    Article  CAS  Google Scholar 

  46. Anwar, S., Khan, F., and Zhang, Y., Process Saf. Environ. Prot., 2020, vol. 141, p. 366. https://doi.org/10.1016/j.psep.2020.05.048

    Article  CAS  Google Scholar 

  47. El-Sayed, A.R., Mohran, H.-S., and Abd El-Lateef, H.M., Metall. Mater. Trans. A, 2012, vol. 43, no. 2, p. 619. https://doi.org/10.1007/s11661-011-0908-4

    Article  CAS  Google Scholar 

  48. Lee, H.-S., et al., Sci. Rep., 2019, vol. 9, no. 1, p. 1. https://doi.org/10.1038/s41598-019-39943-3

    Article  CAS  Google Scholar 

  49. Ortiz, Z.-I., Díaz-Arista, P., Meas, Y., Ortega-Borges, R., and Trejo, G., Corros. Sci., 2009, vol. 51, no. 11, p. 2703. https://doi.org/10.1016/j.corsci.2009.07.002

    Article  CAS  Google Scholar 

  50. Xue, T. and Fan, H.J., J. Energy Chem., 2021, vol. 54, p. 194. https://doi.org/10.1016/j.jechem.2020.05.056

    Article  CAS  Google Scholar 

  51. Kornienko, L.-P., Kasatkin, V.-E., Scherbakov, A.I., Korosteleva, I.G., Kasatkina, I.V., and Dorofeeva, V.N., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, no. 7, p. 1213. https://doi.org/10.1134/S2070205122070061

    Article  CAS  Google Scholar 

  52. Hernández, H.-H., et al., Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels, IntechOpen, 2020, p. 1.

    Google Scholar 

  53. Mosayebi, S., Rezaei, M., and Mahidashti, Z., Colloids Surf., A, 2020, vol. 594, p. 124654. https://doi.org/10.1016/j.colsurfa.2020.124654

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Ministry of higher Education and Scientific Research of Algeria (PRFU project 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayet Moumeni.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouissi, L., Moumeni, H., Boutasta, A. et al. Characterization and Corrosion Protection Properties of Electrodeposited Zn–Ni–Mn Coatings. Prot Met Phys Chem Surf 59, 704–716 (2023). https://doi.org/10.1134/S2070205123700612

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700612

Keywords:

Navigation