Skip to main content
Log in

Optical and Antimicrobial Activity of Nanostructured Mn(II) and Cu(II) Macrocyclic Complexes Derived from Aspartic Acid

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract—In this work, we have reported the synthesis of macrocyclic ligand and its nanostructured mononuclear Mn(II) and Cu(II) complexes using the sonication method. The spectral and elemental analyses have been done using UV–Vis spectroscopy, Fourier transform infrared (FT-IR) Spectroscopy, mass spectrometry, and carbon, hydrogen, and nitrogen elemental (CHN) analyses. The average size and surface morphological analysis of the synthesized nanocomplexes was evaluated using powder X-ray diffraction (XRD) and the field emission scanning electron microscopy (FE-SEM), respectively. The roughness of the nanostructured complexes was generalized by various statistical factors based on fractal studies. The results of the optical absorption data showed that the complexes have direct and indirect energy gap bands in the photon energy range from 2.33–4.31 eV. The various dispersion parameters like the refractive index, absorption index, dielectric constant, and optical conductivity were calculated and interpreted for the nanostructured complexes. The analysis of photoluminescent (PL) spectra showed that with the excitation wavelength of 260 and 460 nm, a strong band at 521 and 542 nm for Mn(II) and Cu(II), respectively, was observed in the emission spectrum. The obtained results indicate that the complexes can act as a promising candidate as green emitting light materials in electroluminescent and optoelectronic devices. The synthesized nanocomplexes were screened in vitro against fungal strains (Candida albicans and Aspergillus niger) and gram-positive bacterial strains (Listeria, Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus and gram-negative bacteria strains (Escherichia coli, Salmonella enterica, Acinetobacter calcoaceticus, Serratia marcescens) by the two-fold serial dilution method. The fractal and antimicrobial studies showed that Cu(II) complex is an excellent candidate to act as an antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Jiang, P., and Guo Z., Coord. Chem. Rev., 2004, vol. 248, p. 205.

    Article  CAS  Google Scholar 

  2. Dutta, B., Bag, P., Flörke., and Nag, K., Inorg. Chem., 2005, vol. 44, p. 147.

    Article  CAS  Google Scholar 

  3. Farag, A.A.M., and Yahia, I.S., Synth. Met., 2011, vol. 161, p. 32.

    Article  CAS  Google Scholar 

  4. Zeyada, H.M., El-Nahass, M.M., El-Zawawi, I.K., and El-Menyawy, E.M. J. Phys. Chem. Solids., 2010, vol. 71, p. 867.

    Article  CAS  Google Scholar 

  5. Patyal, M., Kaur, K., Gupta, N., Malik, A.K., and Paul, K., Asian J. Chem., 2022, vol. 34, p. 2424.

    Article  CAS  Google Scholar 

  6. http://gwyddion.net. Accessed July 11, 2020.

  7. Risovic, D., Pavlovic, Z., Scanning, 2013, vol. 35, p. 402.

    Article  CAS  Google Scholar 

  8. Liu, H.B., Gao, W.W., Tangadanchu, V.K.R., Zhou, C.H., and Geng, R.X., Euro. J Medi. Chem., 2018, vol.143, p. 66.

    Article  CAS  Google Scholar 

  9. Wayne, P.A., Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard 2002 CLSI document M27-A2.

  10. K. Nakamoto, Handbook of Vibrational Spectroscopy, 2006.

    Google Scholar 

  11. El-Boraey, H.A., El-Salamony, M.A., and Hathout, A.A., J. Inc. Phenom. Macro. Chem., 2016, vol. 86, p. 153.

    Article  CAS  Google Scholar 

  12. Kavitha, P., Saritha, M., and Reddy, K.L., Spectrochim. Acta A., 2013, vol. 102, p. 159.

    Article  CAS  Google Scholar 

  13. Mahmoud, W.H., Deghadi, R.G., and Mohamed, G.G., App. Org. Chem., 2016, vol. 30, p. 221.

    Article  CAS  Google Scholar 

  14. Sheikh, R.A., Wani, M.Y., Shreaz, S., and Hashmi, A.A., Arab. J. Chem., 2016, vol. 9, p. 743.

    Article  Google Scholar 

  15. Fahem, A., Spectrochim Acta A., 2012, vol. 88, p.10.

    Article  CAS  Google Scholar 

  16. Ibrahim, O.B., Mahmoud, A.M., Moamen, S.R., Can. Chem. Trans.,2014, vol. 2, p. 108.

    Google Scholar 

  17. Singh, A., Kumar, D., Thakur, A., Gupta, N., Shinde, V., Saini, B.S., and Kaur, R., Ionics., 2021, vol. 27, p. 2193.

    Article  CAS  Google Scholar 

  18. Duan, Q., An, j., Mao, H., Liang, D., Li, H., Wang,S., and Huang, C., Materials., 2021, vol. 14, p. 860.

    Article  CAS  Google Scholar 

  19. Ibrahim, A., Abdel-Aziz, M.H., Zoromba, M.S., and Al-Hossainy, A.F., Syn Met., 2018, vol. 238, p. 1.

    Article  CAS  Google Scholar 

  20. Al-Hossainy, A.F., and Ibrahim, A., Opt. Mat., 2015, vol. 46, p. 131.

    Article  CAS  Google Scholar 

  21. El-Gammal., O.A., El-Brashy, S.A., and Abu El-Reash, G.M., App. Org. Chem., 2020, vol. 34, p. 5456.

    Google Scholar 

  22. Paredes-García, V., Venegas-Yazigi, D., Cabrera, A., Valencia-Gálvez, P., Arriagada, M., Ruiz-Leon, D., and Spodine, E., Polyhedron.,2009, vol. 28, p. 2335.

    Article  Google Scholar 

  23. Gaber, M., El-Wakiel, N., El-Baradie, K., Hafez, S., J. of the Iran. Chemi. Soc., 2019, vol. 16, p. 169.

    CAS  Google Scholar 

  24. More, G., Raut, D., Aruna, K., and Bootwala, S., J. Saudi. Chem. Soc.,2017, vol. 21, p. 954.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to CSIR, New Delhi, for financial help in the form of a junior research fellowship (file: 09/140(0180)/2020-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Gupta.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patyal, M., Kaur, K., Gupta, N. et al. Optical and Antimicrobial Activity of Nanostructured Mn(II) and Cu(II) Macrocyclic Complexes Derived from Aspartic Acid. Prot Met Phys Chem Surf 59, 169–178 (2023). https://doi.org/10.1134/S207020512370034X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512370034X

Keywords:

Navigation