Skip to main content
Log in

Solid Boronizing of AISI 420 Steel: Characterizations and Kinetics Modelling

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract—The AISI 420 steel was subjected to solid boronizing by utilizing a powder mixture constituted by 33.5 wt % of boron carbide, 5.4 wt % of potassium fluoroborate and 61.1 wt % of silicon carbide between 1123 and 1273 K during the time duration of 2–8 h. The boronized layers on the AISI 420 steel were investigated by the adequate experimental tools. The SEM examinations showed a strong tendency to flatness of the generated phase interfaces with the formation of the bilayer (FeB and Fe2B) whose presence was verified by XRD analysis. The tribological characterizations including the tests of Rockwell-C indentation, pin-on-disc and scratch wear were used to analyze the anti-wear features of boronized layers. The boron activation energies in both iron boride phases were determined with the help of the average diffusion coefficient (ADC) approach and their values were compared to the literature results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Kulka, M., in Current Trends in Boriding. Engineering Materials, Cham: Springer, 2019.

    Book  Google Scholar 

  2. Delai O., Cui Xia and Lu Shiqiang, Journal of Materials Research and Technology, 2021, vol. 11, no., p. 1272.

  3. Yu, L.G., Chen, X.J., Khor, K.A., and Sundararajan, G., Acta Mater., 2005, vol. 53, no. 8, p. 2361.

    Article  Google Scholar 

  4. Keddam, M. and Jurči, P., Metal Science and Heat Treatment, 2021, vol. 63, p. 430.

    Article  CAS  Google Scholar 

  5. Campos, I., Torres, R., Ramírez, G., Ganem, R., and Martínez, J., Appl. Surf. Sci., 2006, vol. 252, no. 24, p. 8662.

    Article  CAS  Google Scholar 

  6. Campos-Silva, I., Ortiz-Domínguez, M., Bravo-Bárcenas, O., Doñu-Ruiz, M.A., Bravo-Bárcenas, D., Tapia-Quintero, C., and Jiménez-Reyes, M.Y., Surf. Coat. Technol., 2010, vol. 205, no. 2, p. 403.

    Article  CAS  Google Scholar 

  7. Mebarek, B. and Keddam, M., Mater. Tech., 2018, vol. 106, no. 6, p. 603.

    Article  CAS  Google Scholar 

  8. Mansour, S., Keddam, M., and Boumaali, B., Koroze Ochr. Mater., 2022, vol. 66, p. 40.

    Article  CAS  Google Scholar 

  9. Okamoto, H., Journal of Phase Equilibria and Diffusion, 2004, vol. 25, p. 297.

    Article  CAS  Google Scholar 

  10. Press, W. H., Flannery, B. P., and Teukolsky, S. A., Numerical Recipes in Pascal: The Art of Scientific Computing, Cambridge: Cambridge Univ. Press, 1989.

    Google Scholar 

  11. Kunst, H. and Schaaber, O., Haerterei-Tech. Mitt., 1967, vol. 22, p. 275.

    CAS  Google Scholar 

  12. Vidakis, N., Antoniadis, A., and Bilalis, N., J. Mater. Process. Technol., 2003, vols. 143–144, p. 481.

    Article  Google Scholar 

  13. Taktak, S., Mater. Des., 2007, vol. 28, p.1836.

    Article  CAS  Google Scholar 

  14. Ortiz-Domínguez, M., Keddam, M., Elias-Espinosa, M., Ramírez-Cardona, M., Arenas-Flores, A., Zuno-Silva, J., Cervantes-Sodi, J., and Edgar Cardoso-Legorreta, E., Metall. Res. Technol., 2019, vol. 116, p. 102.

  15. Ortiz-Domínguez, M., Gómez-Vargas, O.A., Keddam, M., Arenas-Flores, A. and García-Serrano, J., Prot Met. Phys. Chem. Surf., 2017, vol. 53, p. 534.

    Article  Google Scholar 

  16. Keddam, M., Chegroune, R., Kulka, M., Panfil, D., Ulker, S., and Taktak, S., Trans Indian Inst Met., 2017, vol. 70, p. 1377.

    Article  CAS  Google Scholar 

  17. Ipek Ayvaz, S. and Aydin, I., Trans. Indian Inst. Met., 2020, vol. 73, p. 2635.

    Article  CAS  Google Scholar 

  18. Kayali, Y. and Taktak, S., J. Adhes. Sci. Technol ., 2015, vol. 29, no.19, p. 2065.

    Article  CAS  Google Scholar 

  19. Angkurarach, L. and Juijerm, P., Arch. Metall. Mater., 2012, vol. 57, no. 3, p. 799.

    Article  CAS  Google Scholar 

  20. Turkoglu, T. and Ay, I., Surf. Eng., 2021, vol. 37, no. 8, p. 1020.

    Article  Google Scholar 

  21. Gunes, I., Trans. Indian Ins.t Met. 2014, Vol. 67, p. 359.

    Article  CAS  Google Scholar 

  22. Kayali, Y., Phys. Met. Metallogr., 2013, vol. 114, no.12, p. 1061.

    Article  Google Scholar 

  23. Kayali, Y., Büyüksaǧis, A., and Yalçin, Y., Met. Mater. Int., 2013, vol. 19, p. 1053.

    Article  CAS  Google Scholar 

  24. Arteaga-Hernandez, L.A., Cuao-Moreu, C.A., Gonzalez-Rivera, C.E., Alvarez-Vera, M., Ortega-Saenz, J.A., and Hernandez-Rodriguez, M.A.L., Wear, 2021, vol. 477, 203825.

    Article  CAS  Google Scholar 

  25. Flores-Rentería, M.A., Ortiz-Domínguez, M., Keddam, M., Damián-Mejía, O., Elias-Espinosa, M., Flores-González, M.A., Medina-Moreno, S.A., Cruz-Avilés, A., and Villanueva-Ibañez, M., High Temp. Mater. Process., 2015, vol. 34, no. 1, p. 1.

    Article  Google Scholar 

  26. Rodríguez-Castro, G.A., Vega-Morón, R.C., Meneses-Amador, A., Jiménez-Díaz, H.W., Andraca-Adame, J.A., Campos-Silva, I.E., and Palomar Pardavé, M.E., Surf. Coat. Technol., 2016, vol. 307, p. 491.

    Article  Google Scholar 

  27. Kayali, Y. and Mertgenç, E., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 151.

    Article  Google Scholar 

  28. Juijerm, P., Kovove Mater., 2014, vol. 52, p. 231.

    Article  CAS  Google Scholar 

  29. Campos-Silva, I., Hernández-Ramirez, E.J., Contreras-Hernández, A., Rosales-Lopez, J.L., Valdez-Zayas, E., Mejía-Caballero, I., and Martínez-Trinidad, J., Surf. Coat. Technol., 2021, vol. 421, no. 15, 127404

    Article  CAS  Google Scholar 

  30. Topuz, P., Çiçek, B. and Akar O., J. Min. Metall. Sect. B‑Metall., 2016, vol. 52, no. 1, p. 63.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work described in this paper was supported by a grant of PRODEP and CONACyT México (National Council of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Domínguez, M., Keddam, M. Solid Boronizing of AISI 420 Steel: Characterizations and Kinetics Modelling. Prot Met Phys Chem Surf 59, 206–219 (2023). https://doi.org/10.1134/S2070205123700338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700338

Keywords:

Navigation