Skip to main content
Log in

Physicochemical Features of Biocorrosion of Copper and Products Based on It by Microfungi

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosion resistance of structural materials has become one of the most important aspects in the electronics industry. In particular, biodeterioration and biocorrosion lead to operational failures and high economic losses. Biocorrosion of copper and base materials applied for the production of printed circuit boards is studied in this work. The inevitable change in the properties and destruction of textolite and glass textolite that are used in the composition of radioelectronic components and are in contact with copper often results in violations of the performance of devices and equipment. An attempt to explain the role of biofilms of microfungi as the main factor of mycological corrosion of copper in the composition of some electronic-industry products is made in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. http://data.europa.eu/eli/reg_impl/2016/1089/oj.

  2. Belov, D.V., Belyaev, S.N., Gevorgyan, G.A., and Maksimov, M.V., Russ. J. Phys. Chem. A, 2022, vol. 96, no. 8, p. 1599. https://doi.org/10.1134/S0036024422080052

    Article  CAS  Google Scholar 

  3. Belov, D.V. and Belyaev, S.N., Kondens. Sredy Mezhfaznye Granitsy, 2022, vol. 24, no. 2, p. 155.https://doi.org/10.17308/kcmf.2022.24/9256

    Article  CAS  Google Scholar 

  4. Belov, D.V. and Belyaev, S.N., Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 6, p. 1640. https://doi.org/10.1134/S2075113322060028

    Article  Google Scholar 

  5. Li, X.L., Narenkumar, J., Rajasekar, A., and Ting, Y.-P., 3 Biotech, 2018, vol. 8, no. 3, p. 178. https://doi.org/10.1007/s13205-018-1196-0

  6. Vargas, I., Fischer, D., Alsina, M., Pavissich, J., Pasten, P., and Pizarro, G., Materials, 2017, vol. 10, no. 9, p. 1036. https://doi.org/10.3390/ma10091036

    Article  CAS  Google Scholar 

  7. Emelyanenko, A.M., Pytskii, I.S., Kaminsky, V.V., Chulkova, E.V., et al., Colloids Surf., B, 2020, vol. 185, p. 110622. https://doi.org/10.1016/j.colsurfb.2019.110622

    Article  CAS  Google Scholar 

  8. Zhao, J., Csetenyi, L., and Gadd, G., Int. Biodeterior. Biodegrad., 2020, vol. 154, p. 105081. https://doi.org/10.1016/j.ibiod.2020.105081

    Article  CAS  Google Scholar 

  9. Santos, J.S., Marquez, V., Buijnsters, J.G., Praserthdam, S., and Praserthdam, P., Appl. Surf. Sci., 2023, vol. 607, p. 155072. https://doi.org/10.1016/j.apsusc.2022.155072

    Article  CAS  Google Scholar 

  10. Gharieb, M.I., Ali, M.I., and El-Shoura, A.A., Biodegradation, 2004, vol. 15, no. 1, p. 49. https://doi.org/10.1023/B:BIOD.0000009962.48723.df

    Article  CAS  Google Scholar 

  11. Okorie, I.E. and Chukwudi, N.R., Zast. Mater., 2021, vol. 62, no. 4, p. 333. https://doi.org/10.5937/zasmat2104333O

    Article  Google Scholar 

  12. Picioreanu, C. and Loosdrecht, M.V., J. Electrochem. Soc., 2002, vol. 149, no. 6, p. B211. https://doi.org/10.1149/1.1470657

    Article  CAS  Google Scholar 

  13. Siqueira, V.M. and Lima, N., J. Mycol., 2013, vol. 2013, p. 152941. https://doi.org/10.1155/2013/152941

    Article  Google Scholar 

  14. Rather, M.A., Gupta, K., and Mandal, M., Braz. J. Microbiol., 2021, vol. 52, no. 12, p. 1. https://doi.org/10.1007/s42770-021-00624-x

    Article  Google Scholar 

  15. Flemming, H.-C. and Wingender, J., Nat. Rev. Microbiol., 2010, vol. 8, no. 9, p. 623. https://doi.org/10.1038/nrmicro2415

    Article  CAS  Google Scholar 

  16. Lewandowski, Z. and Beyenal, H., Mechanisms of Microbially Influenced Corrosion. Springer Series on Biofilms, Heidelberg: Springer, 2008, p. 35. https://doi.org/10.1007/978-3-540-69796-1_3.

  17. Belov, D.V., Chelnokova, M.V., Kalinina, A.A., Sokolova, T.N., Smirnov, V.F., and Kartashov, V.R., Korroz.: Mater., Zashch., 2011, no. 3, p. 19.

  18. Belov, D.V., Chelnokova, M.V., Sokolova, T.N., Smirnov, V.F., Kalinina, A.A., and Kartashov, V.R., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 10, p. 133.

    Google Scholar 

  19. de Grey, A.D.N.J., DNA Cell Biol., 2002, vol. 21, no. 4, p. 251. https://doi.org/10.1089/104454902753759672

    Article  CAS  Google Scholar 

  20. Bielski, B.H.J. and Allen, A.O., J. Phys. Chem., 1977, vol. 81, no. 11, p. 1048. https://doi.org/10.1021/j100526a005

    Article  CAS  Google Scholar 

  21. Belov, D.V., Chelnokova, M.V., Sokolova, T.N., Smirnov, V.F., and Kartashov, V.R., Korroz.: Mater., Zashch., 2009, no. 11, p. 43.

  22. Koval', E.Z. and Sidorenko, L.P., Mikodestruktory promyshlennykh materialov (Micro-Destructors of Industrial Materials), Kiev: Naukova Dumka, 1989.

  23. Sutton, D.A., Fothergill, A.W., and Rinaldi, M.G., Guide to Clinically Significant Fungi, Baltimore: Williams and Wilkins, 1998.

    Google Scholar 

  24. Aruchamy, A. and Fujishima, A., J. Electroanal. Chem., 1989, vol. 272, nos. 1–2, p. 125.

    Article  CAS  Google Scholar 

  25. Di Quarto, F., Piazza, S., and Sunseri, C., Electrochim. Acta, 1985, vol. 30, no. 3, p. 315.

    Article  CAS  Google Scholar 

  26. Strehblow, H.-H., Maurice, V., and Marcus, P., Electrochim. Acta, 2001, vol. 46, p. 3755.

    Article  CAS  Google Scholar 

  27. Modestov, A.D., Zhou, G.-D., Ge, H.-H., and Loo, B.H., J. Electroanal. Chem., 1995, vol. 380, nos. 1–2, p. 63.

    Article  Google Scholar 

  28. Bogdanowicz, R., Ryl, J., Darowicki, K., and Kosmowski, B.B., J. Solid State Electrochem., 2009, vol. 13, p. 1639. https://doi.org/10.1007/s10008-008-0650-z

    Article  CAS  Google Scholar 

  29. Wilhelm, S.M., Tanizawa, Y., Chang-Yi, L., and Hackerman, N., Corros. Sci., 1982, vol. 22, no. 8, p. 791.

    Article  CAS  Google Scholar 

  30. Chaudhary, Y.S., Argaval, A., Shrivastav, R., Satsangi, V.R., and Dass, S., Int. J. Hydrogen Energy, 2004, no. 29, p. 131.

  31. Kublanovsky, V.S., Kolbasov, G.Ya., and Belinskii, V.N., J. Electroanal. Chem., 1996, vol. 415, p. 161.

    Article  Google Scholar 

  32. Kautek, W. and Gordon, J.G., J. Electrochem. Soc., 1990, vol. 137, no. 9, p. 2672.

    Article  CAS  Google Scholar 

  33. Shoesmith, D.W., Rummery, T.E., Owen, D., and Lee, W., J. Electrochem. Soc., 1976, vol. 123, no. 6, p. 790.

    Article  CAS  Google Scholar 

  34. Burke, L.D., Ahern, M.J.G., and Ryan, T.G., J. Electrochem. Soc., 1990, vol. 137, no. 2, p. 553.

    Article  CAS  Google Scholar 

  35. Abd El Halem, S.M. and Ateya, B.G., J. Electroanal. Chem., 1981, vol. 117, no. 2, p. 309.

    Article  Google Scholar 

  36. Ambrose, J., Barradas, R.G., and Shoesmith, D.W., J. Electroanal. Chem., 1973, vol. 47, no. 1, p. 65.

    Article  CAS  Google Scholar 

  37. Ives, D.J.G. and Rawson, A.E., J. Electrochem. Soc., 1962, vol. 109, no. 6, p. 447. https://doi.org/10.1149/1.2425445

    Article  CAS  Google Scholar 

  38. Ives, D.J.G. and Rawson, A.E., J. Electrochem. Soc., 1962, vol. 109, no. 6, p. 452. https://doi.org/10.1149/1.2425446

    Article  CAS  Google Scholar 

  39. Ives, D.J.G. and Rawson, A.E., J. Electrochem. Soc., 1962, vol. 109, no. 6, p. 458. https://doi.org/10.1149/1.2425447

    Article  CAS  Google Scholar 

  40. Ives, D.J.G. and Rawson, A.E., J. Electrochem. Soc., 1962, vol. 109, no. 6, p. 462. https://doi.org/10.1149/1.2425448

    Article  CAS  Google Scholar 

  41. Belov, D.V., Belyaev, S.N., Maksimov, M.V., and Gevorgyan, G.A., Inorg. Mater.: Appl. Res., 2022, vol. 13, no. 6, p. 1640. https://doi.org/10.1134/S2075113322060028

    Article  Google Scholar 

  42. Ni, Y.J., Cheng, Y.Q., Xu, M.Y., Qiu, C.G., et al., Huanjing Kexue, 2019, vol. 40, no. 1, p. 293. https://doi.org/10.13227/j.hjkx.201803215

    Article  Google Scholar 

  43. Liu, A., Liu, J., Han, J., and Zhang, W., J. Hazard. Mater., 2017, vol. 322, p. 129. https://doi.org/10.1016/j.jhazmat.2015.12.070

    Article  CAS  Google Scholar 

  44. Ribeiro, J.P. and Nunes, M.I., Environ. Res., 2021, vol. 197, p. 110957. https://doi.org/10.1016/j.envres.2021.110957

    Article  CAS  Google Scholar 

  45. Zhou, P., Zhang, J., Zhang, Y., Liang, J., Liu, Y., Liu, B., and Zhang, W., J. Mol. Catal. A: Chem., 2016, vol. 424, p. 115. https://doi.org/10.1016/j.molcata.2016.08.022

    Article  CAS  Google Scholar 

  46. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., and Liu, Y., Chem. Eng. J., 2016, vol. 284, p. 582. https://doi.org/10.1016/j.cej.2015.09.001

    Article  CAS  Google Scholar 

  47. Li, B., Fan, Y., Li, C., Zhao, X., Liu, K., and Lin, Y., Electroanalysis, 2018, vol. 30, p. 1. https://doi.org/10.1002/elan.201700574

    Article  CAS  Google Scholar 

  48. Ensafi, A.A., Abarghoui, M.M., and Rezaei, B., Electrochim. Acta, 2014, vol. 123, p. 219. https://doi.org/10.1016/j.electacta.2014.01.031

    Article  CAS  Google Scholar 

  49. Elwell, C.E., Gagnon, N.L., Neisen, B.D., Dhar, D., Spaeth, A.D., Yee, G.M., and Tolman, W.B., Chem. Rev., 2017, vol. 117, no. 3, p. 2059. https://doi.org/10.1021/acs.chemrev.6b00636

    Article  CAS  Google Scholar 

  50. Itoh, S., Acc. Chem. Res., 2015, vol. 48, no. 7, p. 2066. https://doi.org/10.1021/acs.accounts.5b00140

    Article  CAS  Google Scholar 

  51. Bailey, W.D., Dhar, D., Cramblitt, A.C., and Tolman, W.B., J. Am. Chem. Soc., 2019, vol. 141, no. 13, p. 5470. https://doi.org/10.1021/jacs.9b00466

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Belov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, D.V., Belyaev, S.N. & Yunin, P.A. Physicochemical Features of Biocorrosion of Copper and Products Based on It by Microfungi. Prot Met Phys Chem Surf 59, 279–294 (2023). https://doi.org/10.1134/S2070205123700260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700260

Keywords:

Navigation