Skip to main content
Log in

Corrosion Behavior of Fe80.22Si8.25Nb10.09Cu1.44 Amorphous Alloy in Alkali Solutions with Additions of Potassium Thiocyanate

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The electrochemical and corrosion behavior of Fe80.22Si8.25Nb10.09Cu1.44 amorphous metal alloy (AMA) was studied in alkali water solutions with the addition of potassium thiocyanate. An increase in the rate of electrode processes (stimulation) in comparison with the base solution was observed at a KSCN concentration of 0.5, 1.0, and 10.0 mM. At a concentration of 5.0 mM, there was a reduction in both cathodic and anodic processes (inhibition). These findings were interpreted within the framework of an electrochemical mechanism and specific structural features of the electrode material. A change in mechanical properties of AMA after exposure of the alkaline medium with a composition of 0.5 М KON + y mM KSCN, where y = 0.5, 1.0, 5.0, and 10.0, was studied. A change in surface roughness has been established. The fracture pattern changed from a brittle cleavage without influence of the environment to the plastic destruction with crack branching and formation of folded structures for all used solutions. After exposure of the 0.5 М KON + 5 mM KSCN solution, a twofold decrease in tensile strength and Young’s modulus was observed. An increase in the KSCN concentration leads to an increase in surface microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Souza, C., Ribeiro, D.V., and Kiminami, C.S., J. Non-Cryst. Solids, 2016, vol. 442, p. 56.

    Article  CAS  Google Scholar 

  2. Belkhaoudaa, M., Bazzia, L., Benlhachemib, A., Salghic, R., Hammoutid, B., and Kertite, S., J. Appl. Surf. Sci., 2006, vol. 252, p. 7921.

    Article  Google Scholar 

  3. Chattoraj, I., Baunack, S., Stoica, M., and Gebert, A., Mater. Corros., 2004, vol. 55, p. 36.

    Article  CAS  Google Scholar 

  4. V’yugov, P.N. and Dmitrenko, O.E., Vopr. At. Nauki Tekh., 2004, no. 6, p. 185.

  5. Zohdi, H., Shahverdi, H.R., and Hadavi, S.M.M., Electrochem. Commun., 2011, vol. 13, p. 840.

    Article  CAS  Google Scholar 

  6. Souza, C.A.C., May, J.E., Oliveira, M.F., Kuri, S.E., Kiminami, C.S., and Carlos, I.A., J. Non-Cryst. Solids, 2002, vol. 304, p. 210.

    Article  CAS  Google Scholar 

  7. Zhai, F., Pineda, E., Duarte, M.J., and Crespo, D., J. Alloys Compd., 2014, vol. 604, p. 157.

    Article  CAS  Google Scholar 

  8. Botta, W.J., Berger, J.E., Kiminami, C.S., Roche, V., Nogueir, R.P., and Bolfarini, C., J. Alloys Compd., 2014, vol. 586, p. S105.

    Article  CAS  Google Scholar 

  9. Pang, S.J., Zhang, T., Asami, K., and Inoue, A., Mater. Trans., JIM, 2001, vol. 42, p. 376.

    CAS  Google Scholar 

  10. Gostin, P.F., Gebert, A., and Schultz, L., Corros. Sci., 2010, vol. 52, p. 273.

    Article  CAS  Google Scholar 

  11. Kuznetsov, V.V., Filatova, E.A., Telezhkina, A.V., and Kruglikov, S.S., J. Solid State Electrochem., 2018, vol. 22, p. 2267.

    Article  CAS  Google Scholar 

  12. Liqun, M. and Inoue, A., Mater. Lett., 1999, vol. 38, p. 58.

    Article  Google Scholar 

  13. Inoue, A. and Takeuchi, A., Intermetallics, 2010, vol. 18, p. 1779.

    Article  Google Scholar 

  14. Lu, Z.P., Liu, C.T., and Porter, W.D., Appl. Phys. Lett., 2003, vol. 83, p. 2581.

    Article  CAS  Google Scholar 

  15. Gostin, P.F., Oswald, S., Schultz, L., and Geber, A., Corros. Sci., 2012, vol. 62, p. 112.

    Article  CAS  Google Scholar 

  16. Guo, R.Q., Zhang, C., Yang, Y., Peng, Y., and Liu, L., Intermetallic, 2012, vol. 30, p. 94.

    Article  CAS  Google Scholar 

  17. Lopez, M.F., Escudero, M.L., and Vida, E., Electrochim. Acta, 1997, vol. 42, p. 659.

    Article  CAS  Google Scholar 

  18. Movahedi, B., Enayati, M., and Wong, C., J. Therm. Spray Technol., 2010, vol. 19, p. 1093.

    Article  CAS  Google Scholar 

  19. Souza, C.A.C., Bolfarini, C., Botta, F.W.J., Andrade Lma, L.R.P., Oliveira, M.F., and Kiminami, C.S., Mater. Res., 2013, vol. 16, p. 1.

    Google Scholar 

  20. Wang, S.L., Li, H.X., Zhang, X.F., and Yi, S., Mater. Chem. Phys., 2009, vol. 113, p. 878.

    Article  CAS  Google Scholar 

  21. Zhang, Z.C., Long, Z.L., Peng, J., Wei, H.Q., Tang, P., and Li, X.G., Rare Met. Mater. Eng., 2010, vol. 39, p. 162.

    CAS  Google Scholar 

  22. Kabanov, B.N. and Leikis, D.I., Dokl. Akad. Nauk SSSR, 1947, vol. 58, no. 8, p. 1685.

    CAS  Google Scholar 

  23. Kabanov, B.N., Burshtein, P.X., and Frumkin, A.K., Discuss. Faraday Soc., 1947, vol. l, p. 259.

    Article  Google Scholar 

  24. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, KolosS, 2006, p. 496.

    Google Scholar 

  25. Rozenfel’d, I.L., Ingibitory korrozii (Corrosion Inhibitors), Moscow: Khimiya, 1977, p. 252.

  26. Vigdorovich, V.I. and Tsygankova, L.E., Kinetika i mekhanizm elektrodnykh reaktsii v protsessakh korrozii metallov (Kinetics and Mechanism of Electrode Reactions in Metal Corrosion Processes), Tambov: Izd. Pershina R.V., 2010, p. 50.

  27. Tsygankova, L.E. and Vigdorovich, V.I., Ingibitory korrozii metallov (Inhibitors of Metals Corrosion), Tambov: Izd. Pershina R.V., 2010, p. 136.

  28. Ryabov, A.V. and Okishev, K.Yu., Novye metallicheskie materialy i sposoby ikh proizvodstva (New Metal Materials and Methods for their Production), Chelyabinsk: South Ural State Univ., 2007, p. 11.

  29. Gokhshtein, A.Ya., Elektrokhimiya, 1970, vol. 6, no. 7, p. 979.

    CAS  Google Scholar 

  30. Horiuti, J. and Toya, T., in Solid State Surface Science, Green, M., Ed., New York: Marcel Dekker, 1969.

    Google Scholar 

  31. Toya, T., Ito, T., and Ishi, Sh., Elektrokhimiya, 1978, vol. 14, no. 5, p. 703.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results were partially obtained using the equipment of the Center for Collective Research at Derzhavin Tambov State University.

Funding

This work was supported by the Russian Science Foundation (project no. 22-22-00226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, V.A., Balybin, D.V., Pluzhnikova, T.N. et al. Corrosion Behavior of Fe80.22Si8.25Nb10.09Cu1.44 Amorphous Alloy in Alkali Solutions with Additions of Potassium Thiocyanate. Prot Met Phys Chem Surf 59, 272–278 (2023). https://doi.org/10.1134/S2070205123700235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700235

Navigation