Skip to main content
Log in

Scale Resistance of Titanium Silicide Ti5Si–Titanium-Aluminide TiAl3 Powder Composites

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The microstructure, phase composition, and resistance to oxidation upon heating in air in the temperature range of 600–1100°С for composites synthesized in the gasless combustion mode of reactive powder mixtures of titanium, aluminum, and silicon have been studied. Silicide Ti5Si3 and titanium trialuminide TiAl3 were synthesized from two-component mixtures. The combustion products of ternary mixtures contain Ti5Si3 and TiAl3, the ratio of which depends on the aluminum content in the reaction mixtures. The scale resistance of the synthesized powder composites is determined to a greater extent by the microstructure of the granules than by their phase composition. The composition was determined of the reaction powder mixture, the combustion products of which have a scale resistance 1.5–3 times higher than the combustion products of the other studied compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Golovko, E.I., Vysokotemperaturnoe okislenie metallov i splavov. Spravochnik (High-Temperature Oxidation of Metals and Alloys. Handbook), Kiev: Naukova Dumka, 1980.

  2. Dai, J., Zhu, J., Chen, C., and Weng, F., J. Alloys Compd., 2016, vol. 685, p. 784.

    Article  CAS  Google Scholar 

  3. Mitra, R., Int. Mater. Rev., 2006, vol. 51, p. 13.

    Article  CAS  Google Scholar 

  4. Pribytkov, G.A., Krinitsyn, M.G., and Korzhova, V.V., et al., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, p. 70.

    Article  CAS  Google Scholar 

  5. Yoshihara, M.M. and Miura, K., Intermetallics, 1995, vol. 3, p. 351.

    Article  Google Scholar 

  6. Quiang, S., Liu, B., Li, J., et al., Mater. Sci. Eng. Powder Metall., 2015, vol. 20, no. 4, p. 616.

    Google Scholar 

  7. Dong, Z., Jiang, H., Feng, X., and Wang, Z., Trans. Nonferrous Met. Soc. China, 2006, vol. 16, p. 2004.

    CAS  Google Scholar 

  8. Liang, W. and Zhao, X.G., Scr. Mater., 2001, vol. 44, p. 1049.

    Article  CAS  Google Scholar 

  9. Wu, Y., Wang, A.H., Zhang, Z., et al., Appl. Surf. Sci., 2014, vol. 305, p. 16.

    Article  CAS  Google Scholar 

  10. Riley, D.P., Intermetallics, 2006, vol. 14, p. 770.

    Article  CAS  Google Scholar 

  11. Vojtech, D., Kubatik, T., Pavlickova, M., and Maixner, J., Intermetallics, 2006, vol. 14, p. 1181.

    Article  CAS  Google Scholar 

  12. Udayashankar, N.K., Rajasekaran, S., and Nayak, J., Trans. Indian Inst. Met., 2008, vol. 61, no. 2, p. 231.

    Article  CAS  Google Scholar 

  13. Li, Z., Gao, W., He, Y., and Li, S., High Temp. Mater. Processes, 2002, vol. 21, no. 1, p. 35.

    Article  Google Scholar 

  14. Lavrenko, V.O., Firstov, S.O., Panasyuk, A.D., et al., Powder Metall. Met. Ceram., 2003, vol. 42, no. 3, p. 184.

    Article  CAS  Google Scholar 

  15. Sun, F.S., Kim, S.E., Cao, C.X., et al., Scr. Mater., 2001, vol. 456, p. 383.

    Article  Google Scholar 

  16. Sun, F.S. and Froes, F.H. (Sam), Mater. Sci. Eng., A, 2003, vol. 345, p. 262.

    Article  Google Scholar 

  17. Tkachenko, S., Datskevich, O., Dvorak, K., and Kulak, L., J. Alloys Compd., 2017, vol. 694, p. 1098.

    Article  CAS  Google Scholar 

  18. Novák, P., Michalcová, A., Šerák, J., et al., J. Alloys Compd., 2009, vol. 470, p. 123.

    Article  Google Scholar 

  19. Novak, P., Pruša, F., Šerák, J., et al., J. Alloys Compd., 2010, vol. 504, p. 320.

    Article  CAS  Google Scholar 

  20. Zha, M., Wang, H.Y., Li, S.T., et al., Mater. Chem. Phys., 2009, vol. 114, p. 709.

    Article  CAS  Google Scholar 

  21. Zha, M., Wang, H.Y., Li, S.T., et al., ISIJ Int., 2009, vol. 49, no. 3, p. 453.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed according to Government research assignment for ISPMS SB RAS, project FWRW-2021-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pribytkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pribytkov, G.A., Korzhova, V.V., Firsina, I.A. et al. Scale Resistance of Titanium Silicide Ti5Si–Titanium-Aluminide TiAl3 Powder Composites. Prot Met Phys Chem Surf 59, 265–271 (2023). https://doi.org/10.1134/S2070205123700223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700223

Keywords:

Navigation