Skip to main content
Log in

IR-Spectroscopic Investigations of Adsorbed Water and Structural Changes in Hydrophobic and Hydrophilic Microfiltration Membranes

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, the effects of adsorbed water on the structural evolution in the PVDF layer of composite hydrophobic MFFC-3 and hydrophilic MFFC-3G membranes were studied using ATR IR spectroscopy. It has been found that adsorbed water molecules initiate the conformational rearrangement of PVDF polymer molecules in the hydrophilic membrane layer, while the conformation of PVDF polymer molecules in the hydrophobic membrane layer does not change. The deconvolution of the absorption bands of the stretching vibrations of OH groups was carried out using four Gaussians. Based on the frequencies of the Gaussian peaks, the energy was calculated and the hydrogen bonds of adsorbed water were classified. It is shown that the structure of adsorbed water with hydrogen bond energies EOH = 42.8, 35.7, 17.9, and 14 kJ/mol are “clusters” with three or four hydrogen bonds. Energy values EOH = 17.9, 10.6, 16.8, and 14 kJ/mol correspond to OH bonds of dimeric and monomeric water molecules. It is concluded that the structure of adsorbed water in the PVDF layer can be characterized by a mixed model of hydrogen bonds, consisting of monomeric, dimeric molecules, and associated clusters with hydrogen bond energies from 10.6 to 42.8 kJ/mol. A comparative analysis of the ATR IR spectra of water-saturated samples indicates that the adsorbed water molecules in the PVDF “polymer–water” interfacial space of the hydrophobic membrane do not form a layer of bound water, while, in the hydrophilic membrane, water enters the structure of molecules, forming a layer of bound water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Seitzhanova, M.A., Yashnik, S.A., Ismagilov, Z.R., et al., Khim. Interesakh Ustoich. Razvit., 2020, vol. 28, no. 5, p. 494. https://doi.org/10.15372/KhUR20202550

    Article  CAS  Google Scholar 

  2. Abdullin, I.Sh., Ibragimov, R.G., Zaitseva, O.V., et al., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 21, p. 168.

    CAS  Google Scholar 

  3. Trineeva, O.V., Rudaya, M.A., Gudkova, A.A., et al., Vestn. Voronezh. Gos. Univ., Ser. Khim. Biol. Farm., 2018, no. 4, p. 187.

  4. Fedotova, A.V., Shaikhiev, I.G., Dryakhlov, V.O., et al., Vestn. Belgorod. Gos. Tekhnol. Univ. im. V. G. Shukhova, 2016, no. 5, p. 16.

  5. Vasil’eva, V.I., Goleva, E.A., Selemenev, V.F., et al., Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, p. 542.

    Article  Google Scholar 

  6. Khurram, Ghaffar, A., Munawar, A., Ali, N.S., Qaiser, A.A., Hussain, T., and Saleem, R., Russ. J. Electrochem., 2020, vol. 56, no. 7, p. 587. https://doi.org/10.1134/S1023193520060099

    Article  CAS  Google Scholar 

  7. Kotov, V.V., Netesova, G.A., Peregonchaya, O.V., et al., Sorbtsionnye Khromatogr. Protsessy, 2010, vol. 10, no. 2, p. 208.

    Google Scholar 

  8. Shipovskaya, A.B., Extended Abstract of Doctoral Sci. (Eng.) Dissertation, Saratov: Saratov State Univ., 2009.

  9. Shiryaeva, R.N., Kudasheva, F.H., and Shafigullina, D.I., Chemistry, 2015, no. 3 (34), p. 20.

  10. Davydova, O.K., Deryabin, D.G., and Registan, G.I., Microbiology, 2007, vol. 76, p. 266.

    Article  CAS  Google Scholar 

  11. Vladipor. http://www.vladipor.ru/catalog/show/. Accessed February 7, 2022.

  12. Kochervinskii, V.V., Usp. Khim., 1996, vol. 65, no. 10, p. 936.

    Article  CAS  Google Scholar 

  13. Medeiros, K.A.R., Rangel, E.Q., Sant’anna, A.R., et al., Oil Gas Sci. Technol., 2018, vol. 73, p. 48. https://doi.org/10.2516/ogst/2018058

    Article  CAS  Google Scholar 

  14. Cai, X., Lei, T., Sun, D., et al., RSC Adv., 2017, vol. 7, p. 15382. https://doi.org/10.1039/c7ra01267e

    Article  CAS  Google Scholar 

  15. Mavrinskaya, N.A., Lesin, L.A., Baumgarten, M., et al., Vestn. Yuzhno-Ural. Gos. Univ., 2008, no. 7, p. 80.

  16. Zhivulin, V.E., Zherebtsov, D.A., and Pesin, L.A., Izv. Tomsk. Politekh. Univ. Inzhiniring Georesur., 2018, vol. 329, no. 8, p. 80.

    Google Scholar 

  17. Li, Q., Zhao, J., He, B., et al., APL Mater., 2021, vol. 9, p. 010902. https://doi.org/10.1063/5.0035539

    Article  CAS  Google Scholar 

  18. Kim, K.Dzh., Reinol’ds, N.M., and Khsu, S.L., Makromolekuly, 1989, no. 22, p. 4395.

  19. Vodorodnaya svyaz’ (Hydrogen Bond), Sokolov, N.D., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  20. Yukhnevich, G.V., Infrakrasnaya spektroskopiya vody (Infrared Spectroscopy of Water), Moscow: Nauka, 1973.

  21. Chaplin, M., WATER, 2009, vol. 1, p. 1.

    Article  Google Scholar 

  22. Popescu, C.M., Singurel, G., Popescu, M.C., et al., Carbohydr. Polym., 2009, vol. 77, p. 851.

    Article  CAS  Google Scholar 

  23. Lazarev, S.I., Golovin, Yu.M., Kovalev, S.V., et al., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, no. 5, p. 965.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Scientific and Educational Center “Wasteless and Low-Waste Technologies” and the Center for Collective Use “Production and Application of Polyfunctional Nanomaterials” of Tambov State Technical University.

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 20-38-900360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Konovalov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Konovalov, D.N. et al. IR-Spectroscopic Investigations of Adsorbed Water and Structural Changes in Hydrophobic and Hydrophilic Microfiltration Membranes. Prot Met Phys Chem Surf 59, 143–148 (2023). https://doi.org/10.1134/S2070205123700181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700181

Keywords:

Navigation