Skip to main content
Log in

Removal of Lead Ions from Aqueous Media by a Cryogel Based on Graphene Oxide Modified with Lignosulfonate: A Kinetic Study

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This paper studies the kinetics of adsorption of lead ions from aqueous solutions under static conditions on a new nanocomposite material—graphene oxide/lignosulfonate (GO/LS). The adsorption capacity of the nanocomposite with respect to lead ions was 179 mg/g at a extraction time of 20 min. The experimental kinetic dependences were processed in the coordinates of the Elovich pseudo-first- and -second-order models, as well as the Morris and Weber diffusion models and the Boyd model. The performed calculations led to the conclusion that the pseudo-second-order model most accurately describes the adsorption of Pb2+ ions on GO/LS (R2 = 0.999). In this case, the calculated adsorption capacity was 182.52 mg/g. According to diffusion models, sorption is not limited by diffusion, but the rate of the process is limited by diffusion through the film formed on the surface of the sorbent. Thus, we can conclude that the film-diffusion mechanism of adsorption of Pb2+ ions on GO/LS with a contribution to the overall rate of the process of sorbate–sorbate interaction. The results obtained allow us to state that the GO/LS nanocomposite is a promising sorbent in the processes of removing heavy-metal ions from polluted hydrogeosystems and can be considered an effective solution for ensuring the environmental safety of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Francis, M., Political Geography, 2022, no. 97, p. 102627. https://doi.org/10.1016/j.polgeo.2022.102627

  2. Mkrtchyan, F.A. and Shapovalov, S.M., Russ. J. Earth Sci., 2018, vol. 18, no. 4, p. ES4001-10. https://doi.org/10.2205/2018ES000624

    Article  Google Scholar 

  3. Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., et al., Ecotoxicol. Environ. Saf., 2018, no. 148, p. 702. https://doi.org/10.1016/j.ecoenv.2017.11.034

  4. Horikawa, T., Okamoto, M., Kuroki-Matsumoto, A., and Yoshida, K., Carbon, 2022, vol. 196, p. 575. https://doi.org/10.1016/j.carbon.2022.05.031

    Article  CAS  Google Scholar 

  5. Mishra, Sh. and Tripathi, A., Environ. Nanotechnol., Monit. Manage., 2022, vol. 17, p. 100632. https://doi.org/10.1016/j.enmm.2021.100632

    Article  CAS  Google Scholar 

  6. Barus, D.A., Humaidi, S., Ginting, R.T., and Sitepu, J., Environ. Nanotechnol., Monit. Manage., 2022, no. 17. 100650. https://doi.org/10.1016/j.enmm.2022.100650

  7. Dotto, G.L. and Pinto, L.A.A., Carbohydr. Polym., 2011, vol. 84, no. 1, p. 231. https://doi.org/10.1016/j.carbpol.2010.11.028

    Article  CAS  Google Scholar 

  8. Menazea, A.A., Ezzat, H.A., Omara, W., Basyouni, O.H., et al., Comput. Theor. Chem., 2020, no. 1189, p. 112980. https://doi.org/10.1016/j.comptc.2020.112980

  9. Aung, W.M., Marchenko, M.V., Troshkina, I.D., Burakova, I.V., et al., Adv. Mater. Technol., 2019, vol. 16, no. 4, p. 58. https://doi.org/10.17277/amt.2019.04.pp.058-065

    Article  CAS  Google Scholar 

  10. Yang, J., Yu, M., and Chen, W., J. Ind. Eng. Chem., 2015, vol. 21, p. 414. https://doi.org/10.1016/j.jiec.2014.02.054

    Article  CAS  Google Scholar 

  11. Chidi, O. and Kelvin, R., Chem. Int., 2018, no. 4, p. 221.

  12. Cheung, C.W., Porter, J.F., and McKay, G., Sep. Purif. Technol., 2000, no. 19, p. 55. https://doi.org/10.1016/S1383-5866(99)00073-8

  13. Kumar, K.V., J. Hazard. Mater., 2006, no. 137, p. 1538. https://doi.org/10.1016/j.jhazmat.2006.04.036

  14. Fu, B., Ferronato, C., Fine, L., Meunier, F., et al., Chem. Eng. J., 2021, vol. 405, p. 127016. https://doi.org/10.1016/j.cej.2020.127016

    Article  CAS  Google Scholar 

  15. Ngah, W.S.W., Kamari, A., and Koay, Y., Int. J. Biol. Macromol., 2004, vol. 34, p. 155. https://doi.org/10.1016/j.ijbiomac.2004.03.001

    Article  CAS  Google Scholar 

  16. Cheung, C.W., Porter, J.F., and McKay, G., J. Chem. Technol. Biotechnol., 2000, vol. 75, no. 11, p. 963. https://doi.org/10.1002/1097-4660(200011)75:11<963::AIDJCTB302>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  17. López-Luna, J., Ramírez-Montes, L.E., Martinez-Vargas, S., Martínez, A.I., et al., SN Appl. Sci., 2019, no. 1, p. 1. https://doi.org/10.1007/s42452-019-0977-3

  18. Weber, W.J. and Morris, J.C., J. Sanit. Eng. Div., 1963, vol. 89, p. 31. https://doi.org/10.1061/jsedai.0000430

    Article  Google Scholar 

  19. Tran, H.N., You, S.J., Hosseini-Bandegharaei, A., and Chao, H.P., Water Res., 2017, vol. 120, p. 88. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  Google Scholar 

  20. Boyd, G.E., Schubert, J., and Adamson, A.W., J. Am. Chem. Soc., 1947, vol. 69, no. 11, p. 2818. https://doi.org/10.1021/ja01203a064

    Article  CAS  Google Scholar 

  21. Cáceres-Jensen, L., Rodríguez-Becerra, J., Parra-Rivero, J., Escudey, M., et al., J. Hazard. Mater.,2013, vol. 261, p. 602. https://doi.org/10.1016/j.jhazmat.2013.07.073

    Article  CAS  Google Scholar 

  22. Reichenberg, D., J. Am. Chem. Soc., 1953, vol. 75, no. 3, p. 589. https://doi.org/10.1021/ja01099a022

    Article  CAS  Google Scholar 

  23. Khan, T.A., Chaudhry, S.A., and Ali, I., J. Mol. Liq., 2015, vol. 202, p. 165. https://doi.org/10.1016/j.molliq.2014.12.021

    Article  CAS  Google Scholar 

  24. Jain, M., Yadav, M., Kohout, T., Lahtinen, M., et al., Water Resour. Ind., 2018, vol. 20, p. 54. https://doi.org/10.1016/j.wri.2018.10.001

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out on the basis of the Center for Collective Use “Production and Application of Multifunctional Nanomaterials” (Tambov State Technical University).

Funding

This study was supported by the Russian Science Foundation, grant no. 22-13-20074, https://rscf.ru/project/22-13-20074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Burakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkrtchyan, E.S., Ananyeva, O.A., Burakova, I.V. et al. Removal of Lead Ions from Aqueous Media by a Cryogel Based on Graphene Oxide Modified with Lignosulfonate: A Kinetic Study. Prot Met Phys Chem Surf 59, 123–128 (2023). https://doi.org/10.1134/S2070205123700168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700168

Keywords:

Navigation