Skip to main content
Log in

Corrosion Performance of the Zn Coatings on AISI 1212 Mild Steel in 0.5 M NaCl Medium: Influence of Thicknesses of Metallic Film

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The study was carried out to evaluate the electrodeposited performance of electrolytic Zn coated between different thicknesses (Zn-10 μm and Zn-20 μm) and passivation process in protecting AISI 1212 mild steel (MS) from corrosion. Corrosion testing of both methods was performed in 0.5 M NaCl solution by ac impedance measurements (AIM) and Tafel polarization curves (TPC). The inhibition performance was studied by electrochemical and surface analysis techniques (FESEM-EDS, AFM, XRD), which revealed that high strength metallic film forms successfully after passivation applied on the surface in the chloride ions. The results showed that Zn-20 μm coating gave very low inhibition of MS corrosion in chloride solution (~45%), while MS coated with passivation process provided high-efficiency protection (~98%) to the surface. The film resistance (RLPR) obtained from the linear polarization method (LPM) was compatible with AIM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Roberge, P.R., Corrosion Inspection and Monitoring, Wiley, 2007.

    Book  Google Scholar 

  2. Ma, Y., Li., Y., and Wang, F., Corros. Sci., 2009, vol. 51, p. 1725.

    Article  CAS  Google Scholar 

  3. Bernardi, E., Vassura, I., Raffo, S., et al., Constr. Build. Mater., 2020, vol. 236, p. 117515.

    Article  CAS  Google Scholar 

  4. Sinaie, S., Heidarpour, A., and Zhao, X.L., Constr. Build. Mater., 2014, vol. 52, p. 465.

    Article  Google Scholar 

  5. Wang, X., Chen, J.G., Su, G.F., et al., Constr. Build. Mater., 2020, vol. 241, p. 118011.

    Article  Google Scholar 

  6. Zhang, W., Li, H.J., Wang, M., et al., J. Mol. Liq., 2019, vol. 293, p. 111478.

    Article  CAS  Google Scholar 

  7. Zhang, J., Wang, J., Zhu, F., and Du, M., Ind. Eng. Chem. Res., 2015, vol. 54, p. 5197.

    Article  CAS  Google Scholar 

  8. Choudhary, S., Garg, A., and Mondal, K., J. Mater. Eng. Perform., 2016, vol. 25, p. 2969.

    Article  CAS  Google Scholar 

  9. Ma, Y., Li, Y., and Wang, F., Corros. Sci., 2009, vol. 51, p. 997.

    Article  CAS  Google Scholar 

  10. Mattox, D.M., Handbook of Physical Vapor Deposition (PVD) Processing, Boston: Elsevier, 2010.

    Google Scholar 

  11. Ashby, M.F. and Jones, D.R.H., An Introduction to Properties, Application, and Design, Boston: Elsevier, 2012.

    Google Scholar 

  12. De Souza, F.S., Gonçalves, R.S., and Spinelli, A., J. Braz. Chem. Soc., 2014, vol. 25, p. 81.

    CAS  Google Scholar 

  13. Tanaka, H., Mishima, R., Hatanaka, N., Ishikawa, T., and Nakayama, T., Corros. Sci., 2014, vol. 78, p. 384.

    Article  CAS  Google Scholar 

  14. Morcillo, M., Chico, B., Alcantara, J., Diaz, I., Simancas, J., and de la Fuente, D., Mater. Corros., 2015, vol. 66, no. 9, p. 882.

    Article  CAS  Google Scholar 

  15. Jaseela, P.K., Kuruvilla, M., Williams, L., Jacob, C., Shamsheera, K.O., and Joseph, A., Arabian J. Chem., 2020, vol. 13, no. 8, p. 6921.

    Article  CAS  Google Scholar 

  16. Křivý, V., Urban, V., and Kubzová, M., Procedia Eng., 2016, vol. 142, p. 56.

    Article  Google Scholar 

  17. Martínez, C., Briones, F., Villarroel, M., and Vera, R., Materials, 2018, vol. 11, no. 4, p. 591.

    Article  Google Scholar 

  18. Kazimierczak, H., Morgiel, J., Swiatek, Z., Vega, J.M., and García-Lecina, E., Corros. Sci., 2018, vol. 135, p. 107.

    Article  CAS  Google Scholar 

  19. Kanamaru, T., Nakayama, M., Arai, K., Suzuki, S., and Ryoichi, N., US Patent 4877494, 1989.

  20. Yasuhiko, M., Hisao, O., Yoshio, S., Makoto, Y., and Tatsuya, K., Nippon Steel Tech. Rep., 1993, vol. 57, p. 16.

    Google Scholar 

  21. Hasegawa, K., Nakamaru, H., Mochizuki, K., Katagiri, T., Morito, N., and Kurokawa, S., US Patent 5273643, 1993.

  22. Ichida, T., Proc. Conference GALVATECH’95, Chicago, IL, 2018, p. 359.

  23. Zhang, K., Xu, B., Yang, W., Yin, X., Liu, Y., and Chen, Y., Corros. Sci., 2015, vol. 90, p. 284.

    Article  CAS  Google Scholar 

  24. Yanardag, T. and Abbas Aksut, A., Asian J. Chem., 2012, vol. 24, no. 1, p. 345.

    CAS  Google Scholar 

  25. Wu, K., Zhou, X., Wu, X., Lv, B., Jing, G., and Zhou, Z., Int. J. Greenhouse Gas Control, 2019, vol. 83, p. 216.

    Article  CAS  Google Scholar 

  26. Gileadi, E. and Kirowa-Eisner, E., Corros. Sci., 2005, vol. 47, p. 3068.

    Article  CAS  Google Scholar 

  27. Garcia-Anton, J., Fernández-Domene, R.M., Stang-Tovar, R., Escriva-Cerdan, C., Leiva-Garcia, R., Garcia, V., and Urtiaga, A., Chem. Eng. Sci., 2014, vol. 111, p. 402.

    Article  CAS  Google Scholar 

  28. Barret, C.S. and Massalski, T.B., Structure of Metals, Oxford: Pergamon Press, 1980.

    Google Scholar 

  29. Azar, M.M.K., Gugtapeh, H.S., and Rezaei, M., Colloids Surf., A, 2020, vol. 601, p. 125051.

    Article  Google Scholar 

  30. Brett, M.A. and Brett, A.M.O., Electrochemistry Principles, Methods, and Applications, Oxford: Oxford Univ. Prress, 1993.

    Google Scholar 

  31. Dal, S., Demirel, B., and Eskil, M., Eng. Sci. Technol., Int. J., 2021, vol. 24, no. 2, p. 493.

    Google Scholar 

  32. Roberge, P.R. and Eng, P., Corrosion Engineering, New York: McGraw-Hill, 2005.

    Google Scholar 

  33. Durrani, F., Wesley, R., Srikandarajah, V., et al., Eng. Failure Anal., 2020, vol. 109, p. 104261.

    Article  Google Scholar 

  34. Shrier, L.L., Metal/Environment Reactions, Iron and Steel, Boston: Elsevier, 1976.

    Google Scholar 

  35. Turan, Y., Mehtap, K., and Aksüt, A.A., Commun. Fac. Sci. Univ. Ankara, Ser. B: Chem. Chem. Eng., 2010, vol. 56, no. 1, p. 1.

  36. Stern, M. and Geary, A.L., J. Electrochem. Soc., 1957, vol. 104, p. 56.

    Article  CAS  Google Scholar 

  37. Yanardağ, T., Elektrokimyasal Empedans Spektroskopisi, Ankara: Gazi Kitabevi, 2019.

    Google Scholar 

  38. Kahler, H.L. and Gaughan, P.J., Ind. Eng. Chem., 1952, p. 44, p. 1770.

  39. Winston, R.R. and Uhlig, H.H., Corrosion and Corrosion Controls, Wiley, 2008.

    Google Scholar 

  40. Robertson, W., J. Electrochem. Soc., 1951, vol. 98, p. 94.

    Article  CAS  Google Scholar 

  41. Seigo, M. and Uhlig, H.H., J. Electrochem. Soc., 1964, vol. 111, p. 156.

    Article  Google Scholar 

  42. Mercer, A.D. and Jenkıns, I.R., Br. Corros. J., 1968, vol. 3, p. 130.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Ankara University and Erciyes University Scientific Research Projects as the project coded FYL-2018-7713 and 17H0430003, and we thank them for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turan Yanardağ.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanardağ, T., Danışman, Ş. & Maşlak, M. Corrosion Performance of the Zn Coatings on AISI 1212 Mild Steel in 0.5 M NaCl Medium: Influence of Thicknesses of Metallic Film. Prot Met Phys Chem Surf 59, 220–231 (2023). https://doi.org/10.1134/S207020512206020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512206020X

Keywords:

Navigation