Skip to main content
Log in

Preparation of PCLF/Si–Mg–FA Nanocomposite Coating on Ti-based Alloy: Synthesis, Corrosion behavior and Cytocompatibility

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In the present study, polycaprolactone fumarate (PCLF) and polycaprolactone fumarate/silicon and magnesium codoped fluorapatite nanoparticles (PCLF/Si–Mg–FA nanocomposite) were deposited on the surface of Ti–6Al–4V alloy via dip-coating technique. The adhesion test, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffraction (XRD) technique, Fourier transform infrared spectroscopy (FTIR), electrochemical, and in vitro biocompatibility evaluations were utilized to characterize coated and uncoated specimens. The results show that uniform nanocomposite coating (thickness of about 6.65 µm) with appropriate adhesion strength and a homogeneous distribution of Si-Mg-FA nanoparticles throughout the PCLF matrix was coated on the substrate. The potentiodynamic polarization and electrochemical impedance tests, in agreement with each other, indicated higher corrosion resistance of nanocomposite coating in comparison to uncoated and PCLF-coated specimens. Cell cytotoxicity (MTT) evaluation and cell adhesion examinations show no toxicity and represent a good cell attachment with flattened sheet morphologies for nanocomposite coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Zhang, W., Wang Ch., and Liu, W., Wear, 2006, vol. 260, p. 379.

    Article  CAS  Google Scholar 

  2. Aksakal, B., Gavgali, M., and Dikici, B., J. Mater. Eng. Perform., 2010, vol. 19, p. 894.

    Article  CAS  Google Scholar 

  3. Zaffe, D., Bertoldi, C., and Consolo, U., Biomaterials, 2004, vol. 25, p. 3837.

    Article  CAS  Google Scholar 

  4. Mohseni, E., Zalnezhad, E., and Bushroa, A.R., Int. J. Adhes. Adhes., 2014, vol. 48, p. 238.

    Article  CAS  Google Scholar 

  5. Dadash, M.S., Karbasi, S., Esfahani, M.N., et al., J. Mater. Sci.: Mater. Med., 2011, vol. 22, p. 829.

    CAS  Google Scholar 

  6. Dorozhkin, S.V., Biomaterials, 2010, vol. 31, p. 1465.

    Article  CAS  Google Scholar 

  7. Fathi, M.H., Zahrani, E.M., and Zomorodian, A., Mater. Lett., 2009, vol. 3, p. 1195.

    Article  Google Scholar 

  8. Cheng, K., Shen, G., Weng, W., Han, G., Ferreira, J.M.F., and Yang, J., Mater. Lett., 2001, vol. 51, p. 37.

    Article  CAS  Google Scholar 

  9. Kheradmandfard, M., Fathi, M.H., Ansari, F., and Ahmadi, T., Mater. Sci. Eng., C, 2016, vol. 68, p. 136.

    Article  CAS  Google Scholar 

  10. Ahmadi, T., Monshi, A., Mortazavi, V., Fathi, M.H., Hashemibeni, B. and Sharifnabi, A.A., Adv. Ceram. Prog., 2016, vol. 2, p. 5.

    Google Scholar 

  11. Banoriya, D., Purohit, R., and Dwivedi, R.K., Mater. Today: Proc., 2017, vol. 4, p. 3534.

    Google Scholar 

  12. Johari, N., Fathi, M.H., and Golozar, M.A., Composites, Part B, 2012, vol. 43, p. 1671.

    Article  CAS  Google Scholar 

  13. Diba, M., Fathi, M.H., and Kharaziha, M., Mater. Lett., 2011, vol. 65, p. 1931.

    Article  CAS  Google Scholar 

  14. Kim, H.W., Lee, E.J., Kim, H.E., Salih, V., and Knowles, J.C., Biomaterials, 2005, vol. 26, p. 4395.

    Article  CAS  Google Scholar 

  15. Ahmadi, T., Monshi, A., Mortazavi, V., Fathi, M.H., Sharifi, S., Hashemi Beni, B., Moghare Abed, A., Kheradmandfard, M., and Sharifnabi, A., Ceram. Int., 2014, vol. 40, p. 8341.

    Article  CAS  Google Scholar 

  16. ASTM D3359-09: Standard Test Methods for Measuring Adhesion by Tape Test, West Conshohocken, PA: ASTM Int., 2010.

  17. Kokubo, T. and Takadama, H., Biomaterials, 2006, vol. 27, p. 2907.

    Article  CAS  Google Scholar 

  18. Degner, J., Singer, F., Cordero, L., Boccaccini, A.R., and Virtanen, S., Appl. Surf. Sci., 2013, vol. 282, p. 264.

    Article  CAS  Google Scholar 

  19. Goodhew, P.J. and Humpher, J., Electron Microscopy and Analysis, New York: Taylor and Francis, 2001.

    Google Scholar 

  20. Hench, L.L. and Wilson, J., An Introduction to Bioceramics, Singapore: World Scientific Publ., 1993.

    Book  Google Scholar 

  21. Martini, E.M.A. and Muller, I.L., Corros. Sci., 2000, vol. 42, p. 443.

    Article  CAS  Google Scholar 

  22. Matina, E., Attar, M.M., and Ramezanzadeh, B., Prog. Org. Coat., 2015, vol. 78, p. 395.

    Article  Google Scholar 

  23. Kirkland, N., Birbilis, N., and Staiger, M., Acta Biomater., 2012, vol. 8, p. 925.

    Article  CAS  Google Scholar 

  24. Ashassi-Sorkhabi, H. and Eshaghi, M., Corros. Sci., 2013, vol. 77, p. 185.

    Article  CAS  Google Scholar 

  25. Kaivosoja, E., Bareto, G., Levon, K., Virtanen, S., Ainola, M., and Konttinen, Y.T., Ann. Med., 2012, vol. 44, p. 635.

    Article  CAS  Google Scholar 

  26. Udhayan, R. and Bhatt, D.P., J. Power Sources, 1996, vol. 63, p. 103.

    Article  CAS  Google Scholar 

  27. Daroonparvar, M., Yajid, M.A., Gupta, R.K., Yusof, N.M., Bakhsheshi-Rad, H.R., and Ghandvar, H., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 425.

    Article  CAS  Google Scholar 

  28. Daroonparvar, M., Yajid, M.A., Bakhsheshi-Rad, H.R., Kumar, P., Kay, C.M., and Kalvala, P.R., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 1039.

    Article  Google Scholar 

  29. Kaur, S., Sharma, S., and Bala, N., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 583.

    Article  Google Scholar 

  30. Büyüksağiş, A. and Çiftçi, N., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 834.

    Article  Google Scholar 

  31. Shi, M. and Li, H., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 900.

    Article  CAS  Google Scholar 

  32. Tang, H., Wang, M., Zhu, B., and He, L., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 156.

    Article  CAS  Google Scholar 

  33. Pak, S.N., Ju, K.S., Yun, C.Y., Kim, M.H., Ko, M.S., Ryang, S.J., Kim, C.J., Ju-Hyok, U., and Pak, K.S., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p.1059.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahmineh Ahmadi or Hamid Reza Bakhsheshi-Rad.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, N., Ahmadi, T., Dehaghani, M.T. et al. Preparation of PCLF/Si–Mg–FA Nanocomposite Coating on Ti-based Alloy: Synthesis, Corrosion behavior and Cytocompatibility. Prot Met Phys Chem Surf 59, 191–198 (2023). https://doi.org/10.1134/S2070205122060077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122060077

Keywords:

Navigation