Skip to main content
Log in

Diffusion Kinetics of Boronized ASP®2012 Tool Steel Produced by Powder Metallurgy

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Tool steels are generally preferred for shaping and blanking dies in sheet forming industry. A mild heat treatment is needed to bring about the properties needed for long lasting operational characteristics such as low wear rate, high hardness and durability. Blanking and deep drawing processes, plastic injection moulding and various machine components are typical applications of such steels, which can also be produced by powder metallurgy such as ASP®2012 class tool steels with a high hardness value as much as 63 HRC. In this study, boronizing was carried out on ASP®2012 tool steels and diffusion kinetics were investigated for different temperatures (1123, 1173, 1223 K) and holding times (2, 4 and 6 h) in Ekabor-2 powder. The microstructural development and phases in the specimens were investigated by using optical microscopy and Shimadzu XRD-6000 brand X-ray diffraction using CuKα (λ = 1.5406 Å) radiation, respectively. The kinetics study showed that high alloying elements retards the diffusion in the bulk however borides of W2B, Mo2B and CrB were observed within the hard boride layer on ASP®2012 tool steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. PM-HIP—powder metallurgy with high isostatic pressing

REFERENCES

  1. Grinder, O., Met. Powder Rep., 2007, vol. 62, no. 9, p. 16.

    Article  Google Scholar 

  2. Erden, M.A., Gündüz, S., Türkmen, M., and Karabulut, H., Mater. Sci. Eng., A, 2014, vol. 616, p. 201.

    Article  CAS  Google Scholar 

  3. Pengjun, F., Yi, X., Xinggang, L., and Ya, C., Rare Met. Mater. Eng., 2018, vol. 47, no. 2, p. 423.

    Article  Google Scholar 

  4. Robert-Perron, E., Blais, C., Pelletier, S., and Thomas, Y., Mater. Sci. Eng., A, 2007, vol. 458, p. 195.

    Article  Google Scholar 

  5. Solic, S., Schauperl, Z., Godec, M., and Tropsa, V., Tech. J., 2017, vol. 11, no. 4, p. 166.

    Google Scholar 

  6. Toptop, G.O., Kisasoz, A., and Karaaslan, A., Mater. Test., 2013, vol. 55, no. 1, p. 43.

    Article  CAS  Google Scholar 

  7. Rong, W., Andrén, H.O., Wisell, H., and Dunlop, G.L., Acta Metall. Mater., 1992, vol. 40, no. 7, p. 1727.

    Article  CAS  Google Scholar 

  8. Olsson, L.R. and Fischmeister, H.F., Powder Metall., 1978, vol. 21, no. 1, p. 13.

    Article  CAS  Google Scholar 

  9. Babakhani, A., Haerian, A., and Ghambri, M., J. Mater. Process. Technol., 2008, vol. 204, no. 1, p.192.

    Article  CAS  Google Scholar 

  10. Samal, P. and Newkirk, J., Powder metallurgy tool steels, in ASM Handbook, vol. 7: Powder Metallurgy, Samal, P. and Newkirk, J., Eds., ASM Int., 2015.

    Google Scholar 

  11. Woydt, M., Scholz, C., Burbank, J., and Spaltmann, D., Wear, 2021, vol. 474, p. 203707.

    Article  Google Scholar 

  12. Elin, O., Stefan, S., Taoran, M., Sebastian, P., Christophe, L., and Johanna, A., Preprints, 2021, no. 2021010624. https://doi.org/10.20944/preprints202101.0624.v1

  13. Jain, V. and Sundararajan, G., Surf. Coat. Technol., 2002, vol. 149, p. 21.

    Article  CAS  Google Scholar 

  14. Ueda, N., Mizukoshi, T., Demizu, K., Sone, T., Ikenaga, A., and Kawamoto, M., Surf. Coat. Technol., 2000, vol. 126, no. 1, p. 25.

    Article  CAS  Google Scholar 

  15. Campos, I., Ramírez, G., Figueroa, U., and Villa Velázquez, C., Surf. Eng., 2007, vol. 23, no. 3, p. 216.

    Article  CAS  Google Scholar 

  16. Celikyurek, I., Baksan, B., Torun, O., and Gurler, R., Intermetallics, 2006, vol. 14, p. 136.

    Article  CAS  Google Scholar 

  17. Efe, G.Ç., İpek, M., Özbek, İ., and Bindal, C., Mater. Charact., 2008, vol. 59, p. 23.

    Article  CAS  Google Scholar 

  18. Atik, E., Yunker, U., and Meriç, C., Tribol. Int., 2003, vol. 36, p. 155.

    Article  CAS  Google Scholar 

  19. Kayalı, Y., Güneş, İ., and Ulu, S., Vacuum, 2012, vol. 86, p. 1428.

    Article  Google Scholar 

  20. Kayalı, Y., Büyüksağiş, A., and Yalçın, Y., Met. Mater. Int., 2013, vol. 19, no. 5, p. 1053.

    Article  Google Scholar 

  21. Keddam, M. and Kulka, M., Met. Sci. Heat Treat., 2020, vol. 61, no. 11, p. 756.

    Article  CAS  Google Scholar 

  22. Özbek, I., Sen, S., İpek, M., Bindal, C., Zeytin, S., and Üçışık, H.A., Vacuum, 2004, vol. 73, p. 643.

    Article  Google Scholar 

  23. Ozdemir, O., Omar, M.A., Usta, M., Zeytin, S., Bindal, C., and Ucisik, A.H., Vacuum, 2009, vol. 83, p. 175

    Article  Google Scholar 

  24. Bejar, M.A. and Moreno, E., J. Mater. Process. Technol., 2006, vol. 173, p. 352.

    Article  CAS  Google Scholar 

  25. Kayali, Y., Vacuum, 2015, vol. 121, no. 3, p. 129.

    Article  CAS  Google Scholar 

  26. Kayali, Y. and Yalcin, Y., J. Mater. Mechatron.: A, 2020, vol. 1, no. 1, p. 12.

    Google Scholar 

  27. Kayalı, Y. and Yönetken, A., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, no. 4, p. 771.

    Article  Google Scholar 

  28. Taktak, Ş., J. Mater. Sci., 2006, vol. 41, p. 7590.

    Article  CAS  Google Scholar 

  29. Sinha, A., Int. J. Heat Treat., 1991, vol. 4, p. 437.

    Google Scholar 

  30. Turkmen, I., Yalamaç, E., and Keddam, M., Surf. Coat. Technol., 2019, vol. 377, p. 124888.

    Article  CAS  Google Scholar 

  31. Kayali, Y., Vacuum, 2015, vol. 121, no. 3, p. 129.

    Article  CAS  Google Scholar 

  32. Uslu, I., Comert, H., Ipek, M., Ozdemir, O., and Bindal, C., Mater. Des., 2007, vol. 28, p. 55.

    Article  CAS  Google Scholar 

  33. Sen, S., Sen, U., and Bindal, C., Surf. Coat. Technol., 2005, vol. 191, p. 274.

    Article  CAS  Google Scholar 

  34. Kayalı, Y., Phys. Met. Metallogr., 2013, vol. 114, no. 12, p. 1061.

    Article  Google Scholar 

  35. Barut, N., Yavuz, D., and Kayalı, Y., AKU J. Sci. Eng., 2014, vol. 14, no. 1, p. 1.

    Article  Google Scholar 

  36. Kayali, Y. and Mertgenç, E., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 1, p. 151.

    Article  Google Scholar 

Download references

Funding

This study was supported by Şahinkul Research and Development Unit with the project number of “AR-GE-2021-23”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Kayali.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayali, Y., Talaş, Ş., Yalçin, M.C. et al. Diffusion Kinetics of Boronized ASP®2012 Tool Steel Produced by Powder Metallurgy. Prot Met Phys Chem Surf 58, 1036–1043 (2022). https://doi.org/10.1134/S2070205122050100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122050100

Keywords:

Navigation