Skip to main content
Log in

Cerium and Other Rare Earth Salts as Corrosion Inhibitors—A Review

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosion is one of the main problems in materials science that represents a high cost to the world economy. Rare earth elements have attracted attention as corrosion inhibitors due to their excellent results and being environmentally friendly. Although its mechanism of action continues to be studied, the most accepted theory indicates that corrosion inhibition is based on the formation of insoluble oxides/hydroxides and requires specific conditions to be effective, which represents a problem in some applications. In recent years, various lanthanide salts have been investigated, their corrosion protection mechanism being widely reported, and the operation principle is the same for all rare earth elements. Cerium is the element that has been most extensively investigated among them, mainly for its abundance, low cost, favorable results attributed to the formation of oxides/hydroxides that block cathodic sites, and, in recent years, to developing coatings capable of self-healing. Despite not having reached extensive applications in real cases of protection against corrosion, the prospects of rare earth salts as corrosion inhibitors are promising and appear as a viable option for replacing processes involving chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Videla, H.A., Manual of Biocorrosion, CRC Press, 1996.

    Google Scholar 

  2. The Electrochemical Society. Corrosion and Corrosion Prevention. https://www.electrochem.org/corrosionscience/#:~:text=Because of it%2C buildings and,of art around the world. Accessed October, 2020.

  3. Bowman, E., Jacobson, G., Koch, G., Varney, J., Thopson, N., Moghissi, O., Gould, M., and Payer, J., NACE Int., 2016, p. A-19.

    Google Scholar 

  4. Pan, C., Li, X., and Mao, J., Materials (Basel), 2020, vol. 13, p. 1480.

    Article  CAS  Google Scholar 

  5. Xiao, Z., Liu, Y., Wang, Y., and Shi, J., J. Cleaner Prod., 2020, vol. 259, p. 120922.

    Article  CAS  Google Scholar 

  6. Yuan, A., Yang, C., Wang, J., Chen, L., and Lu, R., J. Bridge Eng., 2019, vol. 24.

  7. Tian, Y., Dong, C., Wang, G., Cheng, X., and Li, X., Constr. Build. Mater., 2020, vol. 246, p. 118462.

    Article  CAS  Google Scholar 

  8. Bakhtiary-Noodeh, M., Moradian, S., and Ranjbar, Z., Prog. Org. Coat., 2017, vol. 103, p. 111.

    Article  CAS  Google Scholar 

  9. Akafuah, N., Poozesh, S., Salaimeh, A., Patrick, G., Lawler, K., and Saito, K., Coatings, 2016, vol. 6, p. 24.

    Article  Google Scholar 

  10. Wang, J., Pang, X., and Jahed, H., AIMS Mater. Sci., 2019, vol. 6, p. 567.

    CAS  Google Scholar 

  11. Ellappan, R. and Arumugam, S., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 390, p. 012092.

  12. Glover, C.F., Lim, M.L.C., and Scully, J.R., Supplemental Proc. TMS 2020 149th Annual Meeting & Exhibition. The Minerals, Metals & Materials Series, Cham: Springer, 2020, p. 937.

  13. Pearce, C.D., Surf. Eng., 1992, vol. 8, p. 188.

    Article  CAS  Google Scholar 

  14. Tiong, U.H. and Clark, G., J. Aircr., 2011, vol. 48, p. 1315.

    Article  Google Scholar 

  15. Doublet, A., Kjellberg, M., Jousselme, B., Pinault, M., Deniau, G., Cornut, R., and Charrier, G., RSC Adv., 2019, vol. 9, p. 24043.

    Article  CAS  Google Scholar 

  16. Becker, M., Corros. Rev., 2019, vol. 37, p. 321.

    Article  CAS  Google Scholar 

  17. Majd, M.T., Davoudi, M., Ramezanzadeh, M., Ghasemi, E., Ramezanzadeh, B., and Mahdavian, M., Constr. Build. Mater., 2020, vol. 247, p. 118555.

    Article  Google Scholar 

  18. Chen, Z., Zhang, G., Yang, W., Xu, B., Chen, Y., Yin, X, and Liu, Y., Chem. Eng. J., 2020, vol. 393, p. 124675.

    Article  CAS  Google Scholar 

  19. Wen, J., Lei, J., Chen, J., Gou, J., Li, Y., and Li, L., Chem. Eng. J., 2020, vol. 392, p. 123742.

    Article  CAS  Google Scholar 

  20. Liu, J., Fang, X., Zhu, C., Xing, X., Cui, G., and Li, Z., Colloids Surf., A, 2020, vol. 607, p. 125498.

    Article  CAS  Google Scholar 

  21. Yi, P., Dong, C., Ao, M., and Xiao, K., Ceram. Int., 2020, vol. 46, p. 25568.

    Article  CAS  Google Scholar 

  22. Rodič, P., Lekka, M., Andreatta, F., Fedrizzi, L., and Milošev, I., Prog. Org. Coat., 2020, vol. 147, p. 105701.

    Article  Google Scholar 

  23. Ryu, S., Kwon, Y.J., Kim, Y., and Lee, J.U., Mater. Chem. Phys., 2020, vol. 250, p. 123039.

    Article  CAS  Google Scholar 

  24. Hoche, H., Pusch, C., and Oechsner, M., Surf. Coat. Technol., 2020, vol. 391, p. 125659.

    Article  CAS  Google Scholar 

  25. Ngo, N.K., Shao, S., Conrad, H., Sanders, S.F., D’Souza, F., and Golden, T.D., Mater. Today Commun., 2020, vol. 25, p. 101628.

    Article  CAS  Google Scholar 

  26. Ali, M.M., Magee, J.C., and Hsieh, P.Y., J. Nat. Gas Sci. Eng., 2020, vol. 81, p. 103407.

    Article  CAS  Google Scholar 

  27. Etschel, S., Volk, P., and Koerner, T., JOT, J. Oberflaechentech., 2020, vol. 60, p. 48.

    Article  Google Scholar 

  28. Chauhan, D.S., Quraishi, M.A., Srivastava, V., Haque, J., and Ebrahimi, B.El., J. Mol. Struct., 2020, p. 129259. Chauhan, D.S., Quraishi, M.A., Srivastava, V., Haque, J., and Ebrahimi, B.El., J. Mol. Struct., 2021, vol. 1226, part B, p. 129259.

  29. Sastri, V.S., Challenges Corrosion, Wiley, 2015, p. 1.

    Book  Google Scholar 

  30. Rodičc, P. and Milošev, I., J. Electrochem. Soc., 2016, vol. 163, p. C85.

    Article  Google Scholar 

  31. Rokhlin, L.L., Magnesium Alloys Containing Rare Earth Metals, CRC Press, 2003;

    Book  Google Scholar 

  32. Balaram, V., Geosci. Front., 2019, vol. 10, p. 1285.

    Article  CAS  Google Scholar 

  33. Massari, S. and Ruberti, M., Resour. Policy, 2013, vol. 38, p. 36.

    Article  Google Scholar 

  34. Oh, Y., Han, C.H., Wang, M., Chun, Y.-B., and Han, H.N., J. Alloys Compd., 2021, vol. 853, p. 156980.

    Article  CAS  Google Scholar 

  35. Sheikhani, A., Roumina, R., and Mahmudi, R., J. Alloys Compd., 2021, vol. 852, p. 156961.

    Article  CAS  Google Scholar 

  36. Li, D., Sun, L., Hu, L., Zhu, J., Shi, J., and Guo, D., J. Power Sources, 2021, vol. 482, p. 229052.

    Article  CAS  Google Scholar 

  37. Behrsing, T., Deacon, G.B., and Junk, P.C., The Chemistry of Rare Earth Metals, Compounds, and Corrosion Inhibitors, Woodhead Publ., 2014;

    Book  Google Scholar 

  38. U.S Geological Survey, Mineral Commodity Summaries, 2020. https://pubs.usgs.gov/periodicals/mcs2020/ mcs2020.pdf.

  39. de Damborenea, J., Conde, A., and Arenas, M.A., in Rare Earth-Based Corrosion Inhibitors, Elsevier, 2014, p. 84.

    Google Scholar 

  40. Hinton, B.R.W., Arnott, D.R., and Ryan, N.E., Met. Forum, 1984, vol. 7, p. 211.

  41. Hinton, B.R.W., J. Alloys Compd., 1992, vol. 180, p. 15.

    Article  CAS  Google Scholar 

  42. Han, S., Mu, S., and Du, J., Corrosion, 2019, vol. 75, p. 1100.

    Article  CAS  Google Scholar 

  43. Zhang, Y., Zhou, Z., Tong, D., Ren, H., Du, J., Zhao, Y., Cheng, Y., Lin, P., Zhao, C., and Lv, Y., IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 453, p. 012075.

  44. Cui, Y., Wang, Y., Cui, Z., Qi, W., Wang, J., Ju, P., Zhao, Y., Liu, B., Zhang, T., and Wang, F., Materials (Basel), 2020, vol. 13, p. 23.

    Google Scholar 

  45. Wang, W., Chen, Z., and Feng, S., Materials (Basel), 2019, vol. 12, p. 1.

    Google Scholar 

  46. Dehghani, A., Ramezanzadeh, B., Poshtiban, F., and Bahlakeh, G., Constr. Build. Mater., 2020, vol. 261, p. 119838.

    Article  CAS  Google Scholar 

  47. Zou, Y., Yan, H., Yu, B, and Hu, Z., Intermetallics, 2019, vol. 110, p. 106487.

    Article  CAS  Google Scholar 

  48. Fedel, M., Callone, E., Ziarelli, F., Deflorian, F., and Dirè, S., Electrochim. Acta, 2020, vol. 341, p. 136033.

    Article  CAS  Google Scholar 

  49. Kania, A., Nowosielski, R., Gawlas-Mucha, A., and Babilas, R., Materials (Basel), 2019, vol. 12, p. 30.

    Google Scholar 

  50. Shi, W.N., Zhou, H.F., and Zhang, X.F., Acta Metall. Sin. (Engl. Lett.), 2020, vol. 33, p. 1379.

  51. Lai, G.Q., Liu, H.Z., Chen, B.D., Niu, D., Lei, B., and Jiang, W.T., Int. J. Miner., Metall. Mater., 2020, vol. 27, p. 818.

    Article  CAS  Google Scholar 

  52. Bahremand, F., Shahrabi, T., and Ramezanzadeh, B., J. Colloid Interface Sci., 2021, vol. 582, p. 342.

    Article  CAS  Google Scholar 

  53. Azzeddine, H., Hanna, A., Dakhouche, A., Rabahi, L., Scharnagl, N., Dopita, M., Brisset, F., Helbert, A.L., and Baudin, T., J. Alloys Compd., 2020, vol. 829, p. 154569.

    Article  CAS  Google Scholar 

  54. Fan, H.-Q., Xu, W.-C., Wei, L., Zhang, Z.-H., Liu, Y.-B., and Li, Q., J. Iron Steel Res. Int., 2020, vol. 27, p. 1108.

    Article  CAS  Google Scholar 

  55. Liu, C., Jiang, Z., Zhao, J., Cheng, X., Liu, Z., Zhang, D., and Li, X., Corros. Sci., 2020, vol. 166, p. 108463.

    Article  CAS  Google Scholar 

  56. Yu, S., Jia, R., Guo, F., Zhang, T., and Wang, F., Mater. Lett., 2019, vol. 257, p. 126680.

    Article  CAS  Google Scholar 

  57. Zhang, J. and Dai, Y., IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 358, p. 052059.

  58. Liao, X., Zhang, J., Yu, H., Zhong, X., Liu, Y., Liu, Y., and Liu, Z., J. Magn. Magn. Mater., 2019, vol. 489, p. 165444.

    Article  CAS  Google Scholar 

  59. Tian, Z., Ren, X., Lei, Y., Zheng, L., Geng, W., Zhang, J., and Wang, J., J. Eur. Ceram. Soc., 2019, vol. 39, p. 4245.

    Article  CAS  Google Scholar 

  60. Kendig, M.W. and Buchheit, R.G., Corrosion, 2003, vol. 59, p. 379.

    Article  CAS  Google Scholar 

  61. Liu, Y., Feng, Z., Zhou, X., Thompson, G.E., Skeldon, P., Lyon, S.B., Gibbon, S.R., and Graham, D., Surf. Interface Anal., 2016, vol. 48, p. 804.

    Article  CAS  Google Scholar 

  62. Cui, J., Yuan, W., and Pei, Y., Anti-Corros. Methods Mater., 2019, vol. 66, p. 88.

    Article  CAS  Google Scholar 

  63. Gece, G. and Bilgiç, S., Int. J. Corros. Scale Inhib., 2017, vol. 6, no. 4, p. 476.

    CAS  Google Scholar 

  64. Ma, L., Qiang, Y., and Zhao, W., Chem. Eng. J., 2021, vol. 408, p. 127367.

    Article  CAS  Google Scholar 

  65. Sastri, V.S. and Perumareddi, J.R., Corrosion, 1997, vol. 53, p. 617.

    Article  CAS  Google Scholar 

  66. Chauhan, D.S., Verma, C., and Quraishi, M.A., J. Mol. Struct., 2021, vol. 1227, p. 129374.

    Article  CAS  Google Scholar 

  67. Tan, Y., Huang, Y., and Mansfeld, F., Testing and Analysis Techniques in Rare Earth Inhibitor Research, Woodhead Publ., 2014.

    Book  Google Scholar 

  68. ASTM G59-97: Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, West Conshohocken, PA: ASTM Int., 2020.

  69. Shi, X., Zhu, M., Wang, X., Zhou, S., Wang, X., Zhang, M., and Li, W., J. Rare Earths, 2020, vol. 38, p. 735.

    Article  CAS  Google Scholar 

  70. Deyab, M.A., El-Rehim, S.S.A., Hassan, H.H., and Shaltot, A.M., J. Alloys Compd., 2020, vol. 820, p. 153428.

    Article  CAS  Google Scholar 

  71. Pehkonen, S.O. and Yuan, S., in Tailored Thin Coatings for Corrosion Inhibition Using a Molecular Approach, Elsevier, 2018, p. 63.

    Google Scholar 

  72. Lau, D., Glenn, A.M., Hughes, A.E., Scholes, F.H., Muster, T.H., and Hardin, S.G., Surf. Coat. Technol., 2009, vol. 203, p. 2937.

    Article  CAS  Google Scholar 

  73. Arenas, M.A. and de Damborenea, J.J., Electrochim. Acta, 2003, vol. 48, p. 3693.

    Article  CAS  Google Scholar 

  74. Fedel, M., Ahniyaz, A., Ecco, L.G., and Deflorian, F., Electrochim. Acta, 2014, vol. 131, p. 71.

    Article  CAS  Google Scholar 

  75. Wilson, L. and Hinton, B., WIPO Patent WO1988006639A1, 1988.

  76. Kiyota, S., Valdez, B., Stoytcheva, M., Zlatev, R., and Schorr, M., ECS Trans., 2019, vol. 19, p. 115.

    Article  Google Scholar 

  77. Decroly, A. and Petitjean, J.P., Surf. Coat. Technol., 2005, vol. 194, p. 1.

    Article  CAS  Google Scholar 

  78. Prada Ramirez, O.M., Queiroz, F.M., Terada, M., Donatus, U., Costa, I., Olivier, M.G., and de Melo, H.G., Surf. Interface Anal., 2019, vol. 51, p. 1260.

    Article  CAS  Google Scholar 

  79. Dabalà, M., Armelao, L., Buchberger, A., and Calliari, I., Appl. Surf. Sci., 2001, vol. 172, p. 312.

    Article  Google Scholar 

  80. Hughes, A.E., Scholes, F.H, Glenn, A.M., Lau, D., Muster, T.H., and Hardin, S.G., Surf. Coat. Technol., 2009, vol. 203, p. 2927.

    Article  CAS  Google Scholar 

  81. It, F., George, A., Eadie, S., Hendrik, B., and Hofstee, J., Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press, 2006.

    Google Scholar 

  82. Kinloch, A.J., MRS Bull., 2003, vol. 28, p. 445.

    Article  CAS  Google Scholar 

  83. Morozov, Y., Calado, L.M., Shakoor, R.A., Raj, R., Kahraman, R., Taryba, M.G., and Montemor, M.F., Corros. Sci., 2019, vol. 159, p. 108128.

    Article  CAS  Google Scholar 

  84. Calado, L.M., Taryba, M.G., Morozov, Y., Carmezim, M.J., and Montemor, M.F., Corros. Sci., 2020, vol. 170, p. 108648.

    Article  CAS  Google Scholar 

  85. Harb, S.V., Trentin, A., de Souza, T.A.C., Magnani, M., Pulcinelli, S.H., Santilli, C.V., and Hammer, P., Chem. Eng. J., 2020, vol. 383, p. 123219.

    Article  CAS  Google Scholar 

  86. Yasakau, K.A., Ferreira, M.G.S., Zheludkevich, M.L., Terryn, H., Mol, J.M.C., and Gonzalez-Garcia, Y., Novel and Self-Healing Anticorrosion Coatings Using Rare Earth Compounds, Woodhead Publ., 2014.

    Book  Google Scholar 

  87. Denissen, P.J., Shkirskiy, V., Volovitch, P., and Garcia, S.J., ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 23417.

    Article  CAS  Google Scholar 

  88. Castro, Y., Özmen, E., and Durán, A., Surf. Coat. Technol., 2020, vol. 387, p. 125521.

    Article  CAS  Google Scholar 

  89. Thiangpak, P. and Rodchanarowan, A., ACS Omega, 2020, vol. 5, p. 25647.

    Article  CAS  Google Scholar 

  90. Pirhady Tavandashti, N., Molana Almas, S., and Esmaeilzadeh, E., Prog. Org. Coat., 2021, vol. 152, p. 106133.

    Article  CAS  Google Scholar 

  91. Gong, Y., Geng, J., Huang, J., Chen, Z., Wang, M., Chen, D., and Wang, H., Surf. Coat. Technol., 2021, vol. 417, p. 127208.

    Article  CAS  Google Scholar 

  92. Kirdeikiene, A., Girčiene, O., Gudavičiūte, L., Jasulaitiene, V., Selskis, A., Tutliene, S., Skruodiene, M., Pilipavičius, J., Juodkazyte, J., and Ramanauskas, R., Coatings, 2021, vol. 11, p. 194.

    Article  CAS  Google Scholar 

  93. Attaei, M., Calado, L.M., Morozov, Y., Taryba, M.G., Shakoor, R.A., Kahraman, R., Marques, A.C., and Montemor, M.F., Prog. Org. Coat., 2020, vol. 147, p. 105864.

    Article  CAS  Google Scholar 

  94. Calado, L.M., Taryba, M.G., Morozov, Y., Carmezim, M.J., and Montemor, M.F., Corros. Sci., 2020, vol. 170, p. 108648.

    Article  CAS  Google Scholar 

  95. Calado, L.M., Taryba, M.G., Morozov, Y., Carmezim, M.J., and Montemor, M.F., Electrochim. Acta, 2021, vol. 365, p. 137368.

    Article  CAS  Google Scholar 

  96. World Intellectual Property Organization, Paten Scope. https://patentscope.wipo.int/search/es/search.jsf. Accessed October, 2021.

  97. Ecolab USA Inc. https://www.ecolab.com/. Accessed October, 2021.

  98. BASF. https://www.basf.com/us/en.html. Accessed October, 2021.

  99. ExxonMobil Research & Engineering Company. https://corporate.exxonmobil.com/. Accessed October, 2021.

  100. Texaco Development Corporation. https://www.chevron.com/. Accessed October, 2021.

  101. US Patent 20110300390, 2011.

  102. DePue J.S., Carpenter, C.W.B., and Bemer, L.G., US Patent 5322560A, 1995.

  103. CO M, Ester Base Fluid Compositions, 1974.

  104. Shuqiu, W., Efficient Corrosion-Resistant Anti-Freezing Fluid, 2014.

Download references

Funding

The authors acknowledge the financial support received from “Fondo Sectorial CONACYT-SENER Sustentabilidad Energética” through Grant 207450, “Centro Mexicano de Innovación en Energía Solar (CeMIESol)”, within strategic project no. P62, “Prototype hybrid system of a supercritical CO2 expander with flat polycarbonate mirrors on automated heliostats”.

This work was supported by the National Council of Science and Technology CONACYT (México), through the National Laboratory of Graphenic Materials grant. The support of CONACYT through grant 315878 (LANIAUTO) is greatly appreciated. Thanks to The World Bank and SENER who support this work through the grant no. 002/2017-PRODETES-PLATA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Jesús Pérez Bueno.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez, J.A., Vong, Y.M. & Bueno, J.d. Cerium and Other Rare Earth Salts as Corrosion Inhibitors—A Review. Prot Met Phys Chem Surf 58, 801–810 (2022). https://doi.org/10.1134/S2070205122040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122040141

Keywords:

Navigation