Skip to main content

Structural Characterization and Protective Properties of Spray-Deposited Titania Coating Obtained from Oxime-Modified Titanium(IV) Precursor

Abstract

Spray pyrolytic deposition (SPD) of titania coatings on steel substrates have been carried out using acetoxime-modified titanium(IV) isopropoxide, [Ti(OiPr)2{ONC(CH3)2}2]. The XRD analyses of the deposited titania films indicate presence of anatase titania coating on the steel substrate. The deposition of titania coating was further confirmed by the EDX and XPS analyses. The SEM images of the titania coating over steel substrates indicate presence of crack-free titania film in the range of 1.39–1.50 µm. AFM images of titania coated steel sample represent growth of spiky structures of titania over steel sample. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to evaluate the protective behaviour of a titania coated steel sample in 3.5% aqueous NaCl solution, indicating that the titania coating is corrosion resistant.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Ahmad, A., Yerlikaya, G., Zia-ur-Rehman, Paksoy, H., and Kardaş, G., Int. J. Hydrogen Energy, 2020, vol. 45, p. 2709.

    CAS  Article  Google Scholar 

  2. Maziarz, W., Appl. Surf. Sci., 2019, vol. 480, p. 361.

    CAS  Article  Google Scholar 

  3. Lee, D.-H., Lee, B.-H., Sinha, A.K., Park, J.-H., Kim, M.-S., Park, J., Shin, H., Lee, K.-S., Sung, Y.-E., and Hyeon, T., J. Am. Chem. Soc., 2018, vol. 140, p. 16676.

    CAS  Article  Google Scholar 

  4. Yun, H.-S., Park, B., Choi, Y.C., Im, J., Shin, T.J., and Seok, S.Il., Adv. Energy Mater., 2019, vol. 9, p. 1901343.

    Article  Google Scholar 

  5. Mamaghani, A.H., Haghighat, F., and Lee, C.-S., Chemosphere, 2019, vol. 219, p. 804.

    CAS  Article  Google Scholar 

  6. Rasheed, T., Adeel, M., Nabeel, F., Bilal, M., and Iqbal, H.M.N., Sci. Total Environ., 2019, vol. 688, p. 299.

    CAS  Article  Google Scholar 

  7. Uma Maheswari, A., Anjali, K.K., and Sivakumar, M., Solid State Ionics, 2019, vol. 337, p. 33.

    CAS  Article  Google Scholar 

  8. Vazquez-Santos, M.B., Tartaj, P., Morales, E., and Amarilla, J.M., Chem. Rec., 2018, vol. 18, p. 1178.

    CAS  Article  Google Scholar 

  9. Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A.V., and Reddy, C.V., Int. J. Hydrogen Energy, 2020, vol. 45, p. 7764.

    CAS  Article  Google Scholar 

  10. Wu, W.-Q., Xu, Y.-F., Liao, J.-F., Wang, L., and Kuang, D.-B., Nano Energy, 2019, vol. 62, p. 791.

    CAS  Article  Google Scholar 

  11. Sayahi, H., Aghapoor, K., Mohsenzadeh, F., Mohebi Morad, M., and Darabi, H.R., Sol. Energy, 2021, vol. 215, p. 311.

    CAS  Article  Google Scholar 

  12. Mohan, L., Dennis, C., Padmapriya, N., Anandan, C., and Rajendran, N., Mater. Today Commun., 2020, vol. 23, p.101103.

    CAS  Article  Google Scholar 

  13. Yang, K., Li, J., Wang, Q., Li, Z., Jiang, Y., and Bao, Y., Wear, 2019, vols. 426–427, p. 314.

    Article  Google Scholar 

  14. Simbar, A.R., Shanaghi, A., Moradi, H., and Chu, P.K., Mater. Chem. Phys., 2020, vol. 240, p. 122233.

    CAS  Article  Google Scholar 

  15. Hoseini, A., Yarmand, B., and Kolahi, A., Surf. Coat. Technol., 2021, vol. 409, p. 126938.

    CAS  Article  Google Scholar 

  16. Hojamberdiev, M., Vargas, R., Bhati, V.S., Torres, D., Kadirova, Z.C., and Kumar, M., J. Electroanal. Chem., 2021, vol. 882, p. 115009.

    CAS  Article  Google Scholar 

  17. Paul, T.C., Podder, J., and Babu, M.H., Surf. Interfaces, 2020, vol. 21, p. 100725.

    CAS  Article  Google Scholar 

  18. Iwamura, S., Motohashi, S., and Mukai, S.R., RSC Adv., 2020, vol. 10, p. 38196.

    CAS  Article  Google Scholar 

  19. Li, X., Puttaswamy, M., Wang, Z., Kei Tan, C., Grimsdale, A.C., Kherani, N.P., and Tok, A.I.Y., Appl. Surf. Sci., 2017, vol. 422, p. 536.

    CAS  Article  Google Scholar 

  20. Garlisi, C. and Palmisano, G., Appl. Surf. Sci., 2017, vol. 420, p. 83.

    CAS  Article  Google Scholar 

  21. Deshmukh, H.P., Shinde, P.S., and Patil, P.S., Mater. Sci. Eng., B, 2006, vol. 130, p. 220.

    CAS  Article  Google Scholar 

  22. Nakaruk, A., Ragazzon, D., and Sorrell, C.C., Thin Solid Films, 2010, vol. 518, p. 3735.

    CAS  Article  Google Scholar 

  23. Oja Acik, I., Oyekoya, N.G., Mere, A., Loot, A., Dolgov, L., Mikli, V., Krunks, M., and Sildos, I., Surf. Coat. Technol., 2015, vol. 271, p. 27.

    CAS  Article  Google Scholar 

  24. Saini, A., Dhayal, V., and Agarwal, D.C., Surf. Coat. Technol., 2018, vol. 335, p. 241.

    CAS  Article  Google Scholar 

  25. Chaudhary, A., Dhayal, V., Nagar, M., Bohra, R., Mobin, S.M., and Mathur, P., Polyhedron, 2011, vol. 30, p. 821.

    CAS  Article  Google Scholar 

  26. Armarego, W.L.F. and Chai, C. Purification of Laboratory Chemicals, Oxford: Butterworth-Heinemann, 2009.

    Google Scholar 

  27. Vogel, A.I., Vogel’s Text Book of Quantitative Analysis, Jeffery, J.H., Bassett, J., Mendham, J., and Denney, R.C., Eds., London: Longman, 1989.

    Google Scholar 

  28. Bradley, D.C., Abd-El Halim, F.M., and Wardlaw, W., J. Chem. Soc., 1950, p. 3450.

  29. Singh, D., Saini, A., Dhayal, V., and Agarwal, D.C., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 682.

    CAS  Article  Google Scholar 

  30. Nazeri, A., Trzaskoma-Paulette, P.P., and Bauer, D., J. Sol-Gel Sci. Technol., 1997, vol. 10, p. 317.

    CAS  Article  Google Scholar 

  31. Yun, H., Li, J., Chen, H.-B., and Lin, C.-J., Electrochim. Acta, 2007, vol. 52, p. 6679.

    CAS  Article  Google Scholar 

  32. Li, S. and Fu, J., Corros. Sci., 2013, vol. 68, p. 101.

    CAS  Article  Google Scholar 

  33. Shen, G.X., Chen, Y.C., Lin, L., Lin, C.J., and Scantlebury, D., Electrochim. Acta, 2005, vol. 50, p. 5083.

    CAS  Article  Google Scholar 

  34. Ćurković, L., Ćurković, H.O., Salopek, S., Renjo, M.M., and Šegota, S., Corros. Sci., 2013, vol. 77, p. 176.

    Article  Google Scholar 

  35. Shan, C.X., Hou, X., and Choy, K.-L., Surf. Coat. Technol., 2008, vol. 202, p. 2399.

    CAS  Article  Google Scholar 

  36. Yongwei, C. and Mingyan, L., AIChE J., 2011, vol. 58, p. 1907.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to ONRG, Singapore for financial assistance under NICOP program (grant no. N62909-14-1-N042). The authors would like to thank the Material research center, MNIT in Jaipur for XRD, SEM and XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Dhayal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Singh, D., Agarwal, D.C. et al. Structural Characterization and Protective Properties of Spray-Deposited Titania Coating Obtained from Oxime-Modified Titanium(IV) Precursor. Prot Met Phys Chem Surf 58, 615–622 (2022). https://doi.org/10.1134/S2070205122030182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030182

Keywords:

  • oxime-modified titanium(IV) isopropoxide
  • spray pyrolysis deposition (SPD)
  • titania coating
  • corrosion protection