Skip to main content

Corrosion Behavior of 304 L Steel Coated with PVB/PAn-Nano Metal Oxide (TiO2, ZnO)

Abstract

Polyaniline composites containing TiO2 and ZnO nanoparticles (0.1 and 1.0 wt %) were synthesized by chemical oxidative polymerization method. Polymeric nanocomposites were characterized by using FTIR spectroscopy, XRD, SEM and TEM methods. In addition, thermal properties were investigated by TGA. To prepare PVB/PAn-ZnO and PVB/PAn-TiO2 nanocomposites, PAn-ZnO and PAn-TiO2 powder polymer were dissolved in methanol and mixed with polyvinyl butyral (PVB) and applied to the previously cleaned stainless steel surface. The corrosion behavior of stainless steel surfaces coated with PVB/PAn-ZnO and PVB/PAn-TiO2 composite was researched in 3.5% NaCl using electrochemical impedance spectroscopy (EIS). In addition, steel plates covered with polymeric composite were kept in 3.5% NaCl solution for 15 days and corrosion development was investigated by SEM. It has been found that the presence of inorganic nanoparticles significantly improves the corrosion prevent performance of the polymeric composite and PVB coatings.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Behzadnasab, M., Mirabedini, S.M., Kabiri, K., and Jamali, S., Corros. Sci., 2011, vol. 53, p. 89.

    CAS  Article  Google Scholar 

  2. Zhang, X., Wang, F., and Du, Y., Surf. Coat. Technol., 2017, vol. 201, no. 16, p. 7241.

    Article  Google Scholar 

  3. Ohtsuka, T., Int. J. Corros., 2012, vol. 13, p. 7.

    Google Scholar 

  4. Deshpande, P.P., Jadhav, N.G., Gelling, V.J., and Sazou, D., J. Coat. Technol. Res., 2014, vol. 11, no. 4, p. 473.

    CAS  Article  Google Scholar 

  5. Armelin, E., Meneguzzi, A., Ferreira, C.A., and Aleman, C., Surf. Coat. Technol., 2009, vol. 203, no. 24, p. 3763.

    CAS  Article  Google Scholar 

  6. Elhalawany, N., Mossad, M.A., and Zahran, M.K., Prog. Org. Coat., 2014, vol. 77, no. 3, p. 725.

    CAS  Article  Google Scholar 

  7. Gonzalez-Rodriguez, J.G., J. Power Sources, 2007, vol. 168, p. 184.

    CAS  Article  Google Scholar 

  8. De Berry, D.W., J. Electrochem. Soc., 1985, vol. 132, p. 1022.

    CAS  Article  Google Scholar 

  9. Gurunathan, K. and Amalnerkar, D.P., Mater. Lett., 2003, vol. 57, no. 9, p. 1642.

    CAS  Article  Google Scholar 

  10. Shambharkar, B.H. and Umare, S.S., Mater. Sci. Eng., B, 2010, vol. 175, p. 120.

    CAS  Article  Google Scholar 

  11. Deng, J., He, C.L., Peng, Y., Wang, J., Long, X., Li, P., and Chan, A.S.C., Synth. Met., 2003, vol. 139, no. 2, p. 295.

    CAS  Article  Google Scholar 

  12. Deshpande, N.G., Gudage, Y.G., Sharma, R., Vyas, J.C., Kim, J.B., and Lee, Y.P., Sens. Actuators, B, 2009, vol. 138, p. 76.

    CAS  Article  Google Scholar 

  13. Jia, W., Segal, E., Kornemandel, D., Lamhot, Y., Narkis, M., and Siegmann, A., Synth. Met., 2002, vol. 128, no. 1, p. 115.

    CAS  Article  Google Scholar 

  14. Xue, W., Fang, K., Qiu, H., Li, J., and Mao, W., Synth. Met., 2006, vol. 156, no. 7, p. 506.

    CAS  Article  Google Scholar 

  15. Sathiyanarayanan, S., Azim, S.S., and Venkatachari, G., Prog. Org. Coat., 2007, vol. 59, no. 4, p. 291.

    CAS  Article  Google Scholar 

  16. Hosseini, M.G., Jafari, M., and Najjar, R., Surf. Coat. Technol., 2011, vol. 206, no. 2, p. 280.

    CAS  Article  Google Scholar 

  17. Sasikumar, Y., Kumar, A.M., Gasem, Z.M., and Ebenso, E.E., Appl. Surf. Sci., 2015, vol. 330, p. 207.

    CAS  Article  Google Scholar 

  18. Prasad, G.K., Takei, T., Yonesaki, Y., Kumada, N., and Kinomura, N., Mater. Lett., 2006, vol. 60, no. 29, p. 3727.

    CAS  Article  Google Scholar 

  19. Sharma, B.K., Gupta, A.K., Kharea, N., Dhawan, S.K., and Gupta, H.C., Synth. Met., 2009, vol. 159, no. 5, p. 391.

    CAS  Article  Google Scholar 

  20. Verma, N.K., Mater. Sci. Res. India, 2014, vol. 11, no. 2, p. 146.

    Article  Google Scholar 

  21. Dominis, A.J., Spinks, G.M., and Wallace, G.G., Prog. Org. Coat., 2003, vol. 48, no. 1, p. 43.

    CAS  Article  Google Scholar 

  22. Saravanan, K., Sathiyanarayanan, S., Muralidharan, S., Azim, S.S., and Venkatachari, G., Prog. Org. Coat., 2007, vol. 59, no. 2, p. 160.

    CAS  Article  Google Scholar 

  23. Sathiyanarayanan, S., Azim, S.S., and Venkatachari, G., Electrochim. Acta, 2007, vol. 52, no. 5, p. 2068.

    CAS  Article  Google Scholar 

  24. Sathiyanarayanan, S., Karpakam, V., Kamaraj, K., Muthukrishnan, S., and Venkatachari, G., Surf. Coat. Technol., 2010, vol. 204, no. 9, p. 1426.

    CAS  Article  Google Scholar 

  25. Zor, S. and Ilmieva, N., Polym. Compos., 2018, vol. 39, p. E2415.

    CAS  Article  Google Scholar 

  26. Hao, L., Lv, G., Zhou, Y., Zhu, K., Dong, M., Liu, Y., and Yu, D., Materials, 2018, vol. 11, no. 11, p. 2307.

    Article  Google Scholar 

  27. Olad, A. and Nosrati, R., Prog. Org. Coat., 2013, vol. 76, no. 1, p. 113.

    CAS  Article  Google Scholar 

  28. Arefinia, R., Shojaei, A., Shariatpanahi, H., and Neshati, J., Prog. Org. Coat., 2012, vol. 75, no. 4, p. 502.

    CAS  Article  Google Scholar 

  29. Mostafaei, A. and Nasirpouri, F., Corros. Eng. Sci. Technol., 2013, vol. 48, no. 7, p. 513.

    CAS  Article  Google Scholar 

  30. Min, S., Wang, F., and Han, Y., J. Mater. Sci., 2007, vol. 42, no. 24, p. 9966.

    CAS  Article  Google Scholar 

  31. Feng, W., Sun, E., Fujii, F., Wu, H., Nihara, K., and Yoshino, K., Bull. Chem. Soc. Jpn., 2000, vol. 73, no. 11, p. 2627.

    CAS  Article  Google Scholar 

  32. Gawri, I., Ridhi, R., Singh, K.P., and Tripathi, S.K., Mater. Res. Express, 2018, vol. 5, no. 2, p. 025303.

    Article  Google Scholar 

  33. Eskizeybek, V., Sarı, F., Gulce, H., and Avcı, A., Appl. Catal., B, 2012, vol. 119, p. 197.

    Article  Google Scholar 

  34. Olad, A. and Nosrati, R., Prog. Org. Coat., 2012, vol. 68, p. 319.

    Google Scholar 

  35. Emphasisa, K.M., Vequizob, R.M., Candidato, R.T., Jr., Odarve, M.K.G., Bagsican, F.R.G., Gambe, J.E., Sambo, B.R.B., and Alguno, A.C., Appl. Mech. Mater., 2014, vol. 548, p. 196.

    Article  Google Scholar 

  36. Barton, J.M., Adv. Polym. Sci., 2004, vol. 72, p. 111.

    Article  Google Scholar 

  37. Nabid, M.R., Golbabaee, M., Moghaddam, A.B., Dinarvand, R., and Sedghi, R., Int. J. Electrochem. Sci., 2008, vol. 3, no. 1, p. 1117.

    CAS  Google Scholar 

  38. Golgoon, A., Aliofkhazraei, M., Toorani, M., Moradi, M.H., Rouhaghdam, A.S., and Asgari, M., Anti-Corros. Methods Mater., 2017, vol. 64, no. 4, p. 380.

    Article  Google Scholar 

  39. Rostami, M., Rasouli, S., Ramezanzadeh, B., and Askari, A., Corros. Sci., 2014, vol. 88, p. 387.

    CAS  Article  Google Scholar 

  40. Grundmeier, G., Schmidt, W., and Stratmann, M., Electrochim. Acta, 2000, vol. 45, no. 15, p. 2515.

    CAS  Article  Google Scholar 

Download references

Funding

This research was supported by Scientific Research Projects Unit of Kocaeli University under grant number 2016/065. The authors would like to express their gratitude to Science Research Projects Unit for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Demirel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demirel, S., Savcak, N. Corrosion Behavior of 304 L Steel Coated with PVB/PAn-Nano Metal Oxide (TiO2, ZnO). Prot Met Phys Chem Surf 58, 592–602 (2022). https://doi.org/10.1134/S2070205122030054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122030054

Keywords:

  • corrosion
  • PVB resin
  • PAn nanocomposite
  • Steel 304 L