Abstract
In this work, AISI1040 steel specimens have undergone appropriate heat treatment schedules for the development of ferrite-martensite and ferrite-bainite microstructures. The role of martensite and bainite on corrosion rate and inhibition efficiency was investigated through weight loss experiments in a 0.5 M H2SO4 solution. The effect of various parameters on the corrosion behavior of two types of dual-phase AISI1040 steel has been examined. The investigation of the surface morphology of the samples was accomplished with the presence and absence of a pectin inhibitor. The experimental design was performed with Minitab 19 software and the response surface method and desirability function approach was used to reduce the number of experiments and identify locally optimized conditions for the study parameters. From the results, it was observed that the concentration of inhibitor is having the highest influence on the inhibition efficiency (with 39.38 and 69.67% contribution) followed by temperature and immersion time. Surface studies confirmed corrosion and its intensity on the metal surface as the surface became remarkably rough following exposure to the corrosive medium. The maximum inhibition efficiency of 74.02 and 80.35% is observed for a specific set of parameters for dual-phase ferrite-martensite and ferrite-bainite AISI1040 steel. From the results, it was also observed that lower weight loss and better inhibition efficiency are achieved in the case of ferrite-bainite when compared to the ferrite-martensite microstructure.
This is a preview of subscription content, access via your institution.















REFERENCES
Giampieri, A., Ling-Chin, J., Ma, Z., Smallbone, A., and Roskilly, A.P., Appl. Energy, 2020, vol. 261, p. 114074.
Prabhu, P.R., Prabhu, D., Sharma, S., and Kulkarni, S.M., J. Mater. Eng. Perform., 2020, vol. 29, no. 9, p. 5871.
Prabhu, P.R., Kulkarni, S.M., and Sharma, S., J. Mater. Res. Technol., 2020, vol. 9, no. 5, p. 11402.
Oevermann, T., Wegener, T., and Niendorf, T., Metals, 2019, vol. 9, no. 8, p. 825.
Ben Moussa, N., Gharbi, K., Chaieb, I., and Ben Fredj, N., Int. J. Adv. Manuf. Technol., 2019, vol. 101, no. 1, p. 435.
Zielecki, W., Bucior, M., Trzepiecinski, T., and Ochał, K., Int. J. Adv. Manuf. Technol., 2020, vol. 106, no. 5, p. 2583.
Iribarren, J.I., Liesa, F., Alemán, C., and Armelin, E., J. Cult. Heritage, 2017, vol. 27, p. 153.
Vargel, C., Corrosion of Aluminium, Amsterdam: Elsevier, 2004, p. 81.
Abedini, O., Behroozi, M., Marashi, P., Ranjbarnodeh, E., and Pouranvari, M., Mater. Res., 2019, vol. 22, no. 1, p. e20170969.
Gerengi, H., Sen, N., Uygur, I., and Kaya, E., J. Adhes. Sci. Technol., 2020, vol. 34, no. 8, p. 903.
Song, D., et al., J. Alloys Compd., 2019, vol. 809, p. 151787.
KeleÅŸtemur, O., Aksoy, M., and Yildiz, S., Int. J. Miner., Metall. Mater., 2019, vol. 16, no. 1, p. 43.
Song, D., et al., J. Mater. Res. Technol., 2020, vol. 9, no. 6, p. 12281.
Katiyar, P.K., Misra, S., and Mondal, K., Metall. Mater. Trans. A, 2019, vol. 50, no. 3, p. 1489.
Kumar, S., Kumar, A., Vinaya, Madhusudhan, R., Sah, R., and Manjini, S., J. Mater. Eng. Perform., 2019, vol. 28, no. 6, p. 3600.
Shahzad, M., Tayyaba, Q., Manzoor, T., ud-din, R., Subhani, T., and Qureshi, A.H., Mater. Res. Express, 2018, vol. 5, no. 1, p. 16516.
Zhao, Z., Wang, X., Qiao, G., Zhang, S., Liao, B., and Xiao, F., Mater. Des., 2019, vol. 180, p. 107870.
Basantia, S.K., Bhattacharya, A., Khutia, N., and Das, D., Met. Mater. Int., 2021, vol. 27, p 1025.
Zhu, J.G., Dissertation Abstracts Int., 2019, vol. 80-11(E), p. 177. Zhu, J.G., PhD Thesis, University of Maryland, 2019.
Fereiduni, E. and Ghasemi Banadkouki, S.S., Mater. Des., 2014, vol. 56, p. 232.
Bilal, M.M., et al., J. Mater. Res. Technol., 2019, vol. 8, no. 6, p. 5194.
Gürkan Aydın, A.Y., Int. J. Electrochem. Sci., 2019, vol. 14, p. 2126.
Bignozzi, M.C., et al., Met. Mater. Int., 2020, vol. 26, no. 9, p. 1318.
Zhang, Q., Li, Q., and Chen, X., RSC Adv., 2020, vol. 10, no. 71, p. 43371.
Ma, J., Feng, F., Yu, B., Chen, H., and Fan, L., Int. J. Miner., Metall. Mater., 2020, vol. 27, no. 3, p. 347.
Shinato, K.W., Zewde, A.A., and Jin, Y., Corros. Rev., 2020, vol. 38, no. 2, p. 101.
Nathan, C.C., Corrosion Inhibitors, National Association of Corrosion Engineers, 1973.
Saxena, A., Sharma, V., Thakur, K.K., and Bhardwaj, N., J. Bio- Tribo-Corros., 2020, vol. 6, no. 2, p. 41.
Sanni, S.E., Fayomi, S.I.O., Emetere, M.E., and Tenebe, T.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 2, p. 389.
Mahgoub, F.M., Abdel-Nabey, B.A., and El-Samadisy, Y.A., Mater. Chem. Phys., 2010, vol. 120, no. 1, p. 104.
El Faydy, M., et al., J. Mater. Res. Technol., 2020, vol. 9, no. 1, p. 727.
Li, X. and Deng, S., Korean J. Chem. Eng., 2015, vol. 32, no. 11, p. 2347.
Hanini, K., Benahmed, M., Boudiba, S., Selatnia, I., Akkal, S., and Laouer, H., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, no. 1, p. 222.
Şahin, E.A., Solmaz, R., Gecibesler, İ.H., and Kardaş, G., Mater. Res. Express, 2020, vol. 7, no. 1, p. 16585.
Sotelo-Mazon, O., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 2, p. 427.
Bourazmi, H., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 2, p. 438.
Prabhu, P.R., Prabhu, D., and Rao, P., J. Mater. Res. Technol., 2020, vol. 9, no. 3, p. 3622.
Prabhu, P.R., Prabhu, D., and Rao, P., Chem. Pap., 2021 vol. 75, no. 2, p. 653.
Rashid, K.H. and Khadom, A.A., Korean J. Chem. Eng., 2019, vol. 36, no. 8, p. 1350.
Khadom, A.A., Korean J. Chem. Eng., 2013, vol. 30, no. 12, p. 2197.
Busari, A.A., et al., Silicon, 2020, vol. 13, p. 2053. https://doi.org/10.1007/s12633-020-00587-y
Anadebe, V.C., Onukwuli, O.D., Omotioma, M., and Okafor, N.A., S. Afr. J. Chem. Eng., 2018, vol. 71, p. 51.
Bingöl, D. and Zor, S., Corrosion, 2012, vol. 69, no. 5, p. 462.
Thirumalaikumarasamy, D., Shanmugam, K., and Balasubramanian, V., J. Magnesium Alloys, 2014, vol. 2, no. 1, p. 36.
Dada, M., Popoola, P., Aramide, O., Mathe, N., and Pityana, S., Mater. Today: Proc., 2021, vol. 38, p. 1024.
Tansuğ, G., Tüken, T., Kıcır, N., and Erbil, M., Ionics (Kiel), 2014, vol. 20, no. 2, p. 287.
Zor, S., Erten, U., and Bingöl, D., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, p. 304.
ASTM G1-90: Standard Practice for Preparation, Cleaning, and Evaluating Corrosion Test Specimens, American Society for Testing and Materials, 1999.
Prabhu, D. and Rao, P., J. Bio- Tribo-Corros., 2019, vol. 5, no. 3, p. 76.
Prabhu, D. and Rao, P., J. Environ. Chem. Eng., 2013, vol. 1, no. 4, p. 676.
Johnson, D.C., Kuhr, B., Farkas, D., and Was, G.S., Acta Mater., 2019, vol. 170, p. 166.
Bingöl, D. and Zor, S., Corrosion, 2013, vol. 69, no. 5, p. 462.
Tansuğ, G., Tüken, T., Kıcır, N., and Erbil, M., Ionics (Kiel), 2014, vol. 20, no. 2, p. 287.
Oguzie, E.E., Njoku, V.O., Enenebeaku, C.K., Akalezi, C.O., and Obi, C., Corros. Sci., 2008, vol. 50, no. 12, p. 3480.
Akinbulumo, O.A., Odejobi, O.J., and Odekanle, E.L., Results Mater., 2020, vol. 5, p. 100074.
Fouda, A.S., Al-Sarawy, A.A., Ahmed, F.S., and El-Abbasy, H.M., Corros. Sci., 2009, vol. 51, no. 3, p. 485.
Tang, L., Mu, G., and Liu, G., Corros. Sci., 2003, vol. 45, no. 10, p. 2251.
ACKNOWLEDGMENTS
Authors are thankful to the Department of Chemistry, Department of Mechanical Engineering, and Central Instrumentation Facilities, MAHE, Manipal for lab and instrumental facilities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Rights and permissions
About this article
Cite this article
Prabhu, D., Hiremath, P., Prabhu, P.R. et al. Optimization of the Parameters Influencing the Control of Dual-Phase AISI1040 Steel Corrosion in Sulphuric Acid Solution with Pectin as Inhibitor Using Response Surface Methodology. Prot Met Phys Chem Surf 58, 394–413 (2022). https://doi.org/10.1134/S2070205122020150
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2070205122020150