Skip to main content
Log in

Physicochemical Studies of Material Obtained by Pressing and Sintering Al Powder Modified with V2O5

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The phase composition and morphology of a synthesized material based on aluminum powder modified with various concentrations of V2O5 (3, 5, 10 wt %)—compacted in the form of tablets and sintered at temperatures of 820 and 900°C in He and air—have been studied by X-ray analysis and electron microscopy. It is shown that the phase components are uniformly distributed in the plane of the microsection, and their ratio is determined by the temperature and time of annealing of the pellets. It has been established that, due to the activation of processes on the surface of modified particles of aluminum powder, it becomes possible to control the properties of interphase boundaries in oxidizing and inert media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vol, A.E., Stroenie i svoistva dvoinykh metallicheskikh sistem (Structure and Properties of Binary Metal Systems), Moscow: Fizmatgiz, 1959.

  2. Omran, A.M., J. Al-Azhar Univ. Eng. Sect. (JAUES), 2007, vol. 2, no. 6, p. 36.

    Google Scholar 

  3. Stolecki, B., Borodziuk-Kulpa, A., and Zahorowski, W., J. Mater. Sci.,1987, vol. 22, no. 8, p. 2933.

    Article  CAS  Google Scholar 

  4. Rahmati, B., Sarhan, Ahmed A.D., Basirun, W.J., and Abas, W.A.B.W., J. Alloys Compd., 2016, vol. 676, p. 369. https://doi.org/10.1016/j.jallcom.2016.03.188

    Article  CAS  Google Scholar 

  5. Woo, K.D. and Lee, H.B., Met. Mater. Int., 2010, vol. 16, no. 2, p. 213.

    Article  CAS  Google Scholar 

  6. Omran, A.M., E3 J. Sci. Res., 2014, vol. 2, no. 2, p. 026.

  7. de Souza, D.A. and Nunes, C.A., Int. J. Refract. Met. Hard Mater., 2000, vol. 18, no. 1, p. 55.

    Article  CAS  Google Scholar 

  8. Wan, H., Xu, B., Li, L., Yang, B., Li, D., and Dai, Y., Metals, 2019, vol. 9, p. 558. https://doi.org/10.3390/met9050558

    Article  CAS  Google Scholar 

  9. Liu, Y., Wang, D., Deng, C., Huo, L., Wang, L., and Fang, R., J. Alloys Compd., 2015, vol. 628, p. 208. https://doi.org/10.1016/j.jallcom.2014.12.144

    Article  CAS  Google Scholar 

  10. Keller, J.G. and Douglasst, D.L., Oxid. Met., 1991, vol. 36, nos. 5/6, p. 439.

    Article  CAS  Google Scholar 

  11. Yang Liu, Dongpo Wang, Caiyan Deng, Lixing Huo, Lijun Wang, and Rui Fang, J. Alloys Compd., 2015, vol. 628, p. 208. https://doi.org/10.1016/j.jallcom.2014.12.144

    Article  CAS  Google Scholar 

  12. Shevchenko, V.G., Eselevich, D.A., Konyukova, A.V., and Krasil’nikov, V.N., RF Patent 2509790, Byull. Izobret., 2014, no. 8.

  13. Shevchenko, V.G., Eselevich, D.A., Konyukova, A.V., and Krasil’nikov, V.N., Russ. J. Phys. Chem., B, 2014, vol. 8, no. 5, p. 634.

    CAS  Google Scholar 

  14. Eselevich, D.A., Cand. Sci. (Chem.) Dissertation, Yekaterinburg: Institute of Solid State Chemistry of the Ural Branch Russ. Acad. Sci., 2016.

  15. Shevchenko, V.G., Krasil’nikov, V.N., Eselevich, D.A., and Konyukova, A.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, p. 835.

    Article  CAS  Google Scholar 

  16. Shevchenko, V.G., Eselevich, D.A., Ancharov, A.I., and Tolochko, B.P., Univers. J. Phys. Appl., 2017, vol. 11, no. 4, p. 115.

    Google Scholar 

  17. Shevchenko, V.G., Eselevich, D.A., Vinokurov, Z.S., and Konyukova, A.V., Combust., Explos., Shock Waves, 2019, vol. 55, no. 3, p. 289.

    Article  Google Scholar 

  18. Shevchenko, V.G., Krasil’nikov, V.N., Yeselevich, D.A., and Konyukova, A.V., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 1, p. 21.

    Article  CAS  Google Scholar 

  19. Wang, Y., Shang, H., Chou, T., and Cao, G., J. Phys. Chem. B, 2005, vol. 109, p. 11361. https://doi.org/10.1021/jp051275+

    Article  CAS  Google Scholar 

  20. A Rietveld Extended Program to Perform the Combined Analysis: Diffraction, Fluorescence and Reflectivity Data Using X-Ray, Neutron, TOF or Electrons. http://maud.radiographema.eu. Accessed February 10, 2020.

  21. Okamoto, H., J. Phase Equilib. Diffus., 2012, vol. 33, no. 6, p. 491.

    Article  CAS  Google Scholar 

  22. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Abridged Chemical Handbook), Leningrad: Khimiya, 1977.

  23. Shevchenko, V.G., Eselevich, D.A., Popov, N.A., et al., Combust., Explos., Shock Waves, 2018, vol. 54, no. 1, p. 58.

    Article  Google Scholar 

Download references

Funding

This work was carried out in accordance with state order to the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, no. AAAA-A19-119031890028-0, structural unit no. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Shevchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.G., Krasilnikov, V.N., Eselevich, D.A. et al. Physicochemical Studies of Material Obtained by Pressing and Sintering Al Powder Modified with V2O5. Prot Met Phys Chem Surf 58, 84–89 (2022). https://doi.org/10.1134/S207020512201018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512201018X

Keywords:

Navigation