Skip to main content
Log in

Laws of Cresol-Vapor Sorption on Highly Porous Materials of Biomodified Flax Shive

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

To obtain effective mesoporous sorbents for air purification, flax shive was modified by biocatalyzed cleavage of hemicelluloses and pectin substances using fermentation products for redox transformations of lignin. The changes in the polymer composition and parameters of the pore structure of flax shive were estimated by the methods of sequential extraction of polysaccharides and low-temperature adsorption of nitrogen. The change in the state of lignin upon the binding of o- and p-cresols was traced by the method of Fourier IR spectroscopy. For samples of native and modified flax shive and lignin preparations isolated from them, the kinetics of adsorption of cresol vapors was analyzed in the temperature range of 298–313 K. An adequate description of the sorption process was obtained by using a kinetic model of pseudosecond order to determine the level of limiting sorption of cresols on glycans and lignin. The thermodynamic parameters of sorption were calculated from specific sorbate retention volume data. Modeling results made it possible to differentiate the contribution of polymeric components of the flax substrate and to estimate the ability of functional groups of lignin of the biomodified flax shive to sorption binding of cresol in ortho- and para-isomeric forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Im, J.Y., Kim, B.K., Kim, H.J., et al., Int. J. Environ. Res., 2020, vol. 14, no. 3, p. 1. https://doi.org/10.1007/s41742-020-00264-3

    Article  CAS  Google Scholar 

  2. Obzor sostoyaniya i zagryazneniya okruzhayushchei sredy v Rossiiskoi Federatsii za 2019 god (Review of the State and Pollution of Environment in the Russian Federation for 2019), Moscow: Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet), 2020. http://downloads.igce.ru/publications/reviews/review2019.pdf.

  3. Sas, O.G., Sanchez, P.B., Gonzalez, B., et al., Sep. Purif. Technol., 2020, vol. 236, p. 116310. https://doi.org/10.1016/j.seppur.2019.116310

    Article  CAS  Google Scholar 

  4. Zhu, Y., Kolar, P., Shah, S.B., et al., Environ. Technol. Innovation, 2018, vol. 9, p. 63. https://doi.org/10.1016/j.eti.2017.10.006

    Article  Google Scholar 

  5. Borhan, M.S., Capareda, S., Mukhtar, S., et al., J. Air Waste Manage. Assoc., 2012, vol. 62, no. 4, p. 381. https://doi.org/10.1080/10473289.2011.646050

    Article  CAS  Google Scholar 

  6. Genis, A.V. and Kuznetsov, A.V., Ross. Khim. Zh., 2019, vol. 63, no. 1, p. 27. https://doi.org/10.6060/rcj.2019631.2

    Article  Google Scholar 

  7. Henning, L.M., Abdullayev, A., Ahmetoglu, C.V., et al., Adv. Energy Sustainability Res., 2021, vol. 2, no. 5, p. 2100005. https://doi.org/10.1002/aesr.202100005

    Article  Google Scholar 

  8. Xie, Y., Guo, F., Mao, J., et al., Sep. Purif. Technol., 2021, vol. 254, p. 117571. https://doi.org/10.1016/j.seppur.2020.117571

    Article  CAS  Google Scholar 

  9. Wang, Y., Chen, X., Kuang, Y., et al., Int. J. Low-Carbon Technol., 2019, vol. 14, no. 3, p. 335. https://doi.org/10.1093/ijlct/ctx021

    Article  CAS  Google Scholar 

  10. Zeng, Z., Ma, X.Y.D., Zhang, Y., et al., ACS Sustainable Chem. Eng., 2019, vol. 7, no. 7, p. 6959. https://doi.org/10.1021/acssuschemeng.8b06567

    Article  CAS  Google Scholar 

  11. Capasso, I., Liguori, B., Verdolotti, L., et al., Sci. Rep., 2020, vol. 10, p. 612. https://doi.org/10.1038/s41598-019-55582-0

    Article  CAS  Google Scholar 

  12. Moon, S.M., Min, H., and Park, S., RSC Adv., 2019, vol. 9, no. 39, p. 22205. https://doi.org/10.1039/c9ra03948a

    Article  CAS  Google Scholar 

  13. Khazma, M., Goullieux, A., Dheilly, R.M., et al., Ind. Crops Prod., 2014, vol. 61, p. 442. https://doi.org/10.1016/j.indcrop.2014.07.041

    Article  CAS  Google Scholar 

  14. Lepilova, O.V., Aleeva, S.V., and Koksharov, S.A., Russ. J. Org. Chem., 2012, vol. 48, no. 1, p. 83. https://doi.org/10.1134/S1070428012010125

    Article  CAS  Google Scholar 

  15. Lepilova, O., Spigno, G., Aleeva, S., et al., Eurasian Chem.-Technol. J., 2017, vol. 19, no. 1, p. 31. https://doi.org/10.18321/ectj500

    Article  CAS  Google Scholar 

  16. Koksharov, S.A., Aleeva, S.V., and Lepilova, O.V., RF Patent 2366771, 2009, no. 25.

  17. Koksharov, S., Aleeva, S., and Lepilova, O., Autex Res. J., 2015, vol. 15, no. 3, p. 215. https://doi.org/10.1515/aut-2015-0003

    Article  CAS  Google Scholar 

  18. Aleeva, S.V. and Koksharov, S.A., Russ. J. Gen. Chem., 2012, vol. 82, no. 13, p. 2279. https://doi.org/10.1134/S1070363212130154

    Article  CAS  Google Scholar 

  19. Aleeva, S.V., Chistyakova, G.V., Lepilova, O.V., and Koksharov, S.A., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 8, p. 1583. https://doi.org/10.1134/S0036024418080022

    Article  CAS  Google Scholar 

  20. Koksharov, S.A., Aleeva, S.V., and Lepilova, O.V., J. Mol. Liq., 2019, vol. 283, p. 606. https://doi.org/10.1016/j.molliq.2019.03.109

    Article  CAS  Google Scholar 

  21. Aleeva, S.V., Lepilova, O.V., and Koksharov, S.A., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, no. 1, p. 37. https://doi.org/10.1134/S2070205121010032

    Article  CAS  Google Scholar 

  22. Kennedy, L.J., Vijaya, J.J., Sekaran, G., et al., J. Hazard. Mater., 2007, vol. 149, p. 134. https://doi.org/10.1016/j.jhazmat.2007.03.061

    Article  CAS  Google Scholar 

  23. Singh, R.K., Kumar, Sh., Kumar, S., et al., J. Hazard. Mater., 2008, vol. 155, p. 523. https://doi.org/10.1016/j.jhazmat.2007.11.117

    Article  CAS  Google Scholar 

  24. Koksharov, S.A., Lepilova, O.V., and Aleeva, S.V., Int. J. Chem. Eng., 2019, vol. 2019, article no. 4137593. https://doi.org/10.1155/2019/4137593

    Article  CAS  Google Scholar 

  25. Aleeva, S.V., Lepilova, O.V., and Koksharov, S.A., J. Appl. Spectrosc., 2020, vol. 87, no. 5, p. 779. https://doi.org/10.1007/s10812-020-01069-0

    Article  CAS  Google Scholar 

  26. Ho, Yu.Sh., Scientometrics, 2004, vol. 1, no. 59, p. 171. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf

    Article  Google Scholar 

  27. Douven, S., Paez, C.A., and Gommes, C.J., J. Colloid Interface Sci., 2015, vol. 448, p. 437. https://doi.org/10.1016/j.jcis.2015.02.053

    Article  CAS  Google Scholar 

  28. Martynenko, E.S., Solodovnichenko, V.S., Kryazhev, Yu.G., et al., Solid Fuel Chem., 2015, vol. 49, no. 6, p. 387. https://doi.org/10.3103/S0361521915060063

    Article  CAS  Google Scholar 

  29. Gus'kov, I.Yu., Ivanov, S.P., Shaikhitdinova, Yu.F., et al., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 10, p. 2006. https://doi.org/10.1134/S0036024416100149

    Article  CAS  Google Scholar 

  30. Gurevich, V.L. and Sosnovskii, N.P., Izbiratel’nye rastvoriteli v pererabotke nefti (Selective Solvents for Oil Refining), Moscow: Gostoptekhizdat, 1953.

  31. Suresh, S.J. and Naik, V.M., J. Chem. Phys., 2000, vol. 113, p. 9727. https://doi.org/10.1063/1.1320822

    Article  CAS  Google Scholar 

  32. Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, Chichester: Wiley, 2000.

    Google Scholar 

Download references

Funding

This work was carried out within the framework of a state assignment to the Krestov Institute of Solution Chemistry of the Russian Academy of Sciences (project no. 01201260483) for implementation under the START program of the Innovation Promotion Fund (contract no. 3645GS1/60536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Aleeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleeva, C.V., Lepilova, O.V. & Koksharov, S.A. Laws of Cresol-Vapor Sorption on Highly Porous Materials of Biomodified Flax Shive. Prot Met Phys Chem Surf 58, 13–21 (2022). https://doi.org/10.1134/S2070205122010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122010026

Keywords:

Navigation