Skip to main content
Log in

Some Thermodynamic and Kinetic Properties of the HCl–H3PO4–H2O–Fe(III) System

  • GENERAL PROBLEMS OF CORROSION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

To characterize the oxidizing ability of the HCl—H3PO4–H2O–Fe(III) system, the electrode potentials of the Fe(III)/Fe(II) redox couple and the half-wave potentials of transitions Fe3+ + e = Fe2+ and Fe2+ – e = Fe3+ on a cyclic voltammogram of a platinum electrode in acid solutions containing Fe(III) salts have been measured. It is shown that the values of these experimentally obtained parameters are close. A decrease in the oxidizing ability of the mixtures of HCl and H3PO4 containing Fe(III) with an increase in the molar fraction of H3PO4 occurs due to the formation of complexes of Fe(III) with phosphate anions, which are inferior in oxidizing ability to their hydrate and chloride complexes. Temperature coefficients of the electrode potential (dE/dt) of the Fe(III)/Fe(II) redox couple in the HCl—H2O, HCl—H3PO4–H2O, and H3PO4–H2O systems have been experimentally determined. Based on the Randles–Shevchik equation, the diffusion coefficients of Fe(III) in the solutions under study were calculated. The temperature dependence of the diffusion coefficients of Fe(III) cations is satisfactorily described by the Arrhenius equation. The parameters of this equation are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Antropov, L.I., Makushin, E.M., and Panasenko, V.F., Ingibitory korrozii metallov (Inhibitors of Metals Corrosion), Kiev: Tekhnika, 1981, pp. 58–61.

  2. Avdeev, Ya.G., Gorichev, I.G., and Luchkin, A.Yu., Int. J. Corros. Scale Inhib., 2012, vol. 1, no. 1, pp. 26–37. https://doi.org/10.17675/2305-6894-2012-1-1-026-037

    Article  Google Scholar 

  3. Avdeev, Ya.G., Panova, A.V., Andreeva, T.E., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2019, no. 11, pp. 32–40. https://doi.org/10.31044/1813-7016-2019-0-11-32-40

  4. Avdeev, Ya.G., Kireeva, O.A., Kuznetsov, D.S., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2018, no. 7, pp. 22–28. https://doi.org/10.31044/1813-7016-2018-0-7-22-28

  5. Avdeev, Ya.G., Tyurina, M.V., Kuznetsov, Yu.I., Pronin, Yu.E., and Kazanskii, L.P., Korroz.: Mater., Zashch., 2013, no. 6, pp. 17–23.

  6. Avdeev, Ya.G., Tyurina, M.V., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2014, no. 1, pp. 18–25.

  7. Lur'e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1971, pp. 255–265.

  8. Zhu, X., Nordstrom, D.K., McCleskey, R.B., Wang, R., and Lu, X., Chem. Geol., 2017, vol. 460, pp. 37–45. https://doi.org/10.1016/j.chemgeo.2017.04.010

    Article  CAS  Google Scholar 

  9. Majima, H. and Awakura, Y., Metall. Trans. B, 1985, vol. 16, pp. 433–439.

    Article  Google Scholar 

  10. Rakhimova, M.M., Nurmatov, T.M., Yusupov, N.Z., Ismailova, M.A., and Faizullaev, E., Russ. J. Inorg. Chem., 2013, vol. 58, no. 6, pp. 719–723.

    Article  CAS  Google Scholar 

  11. Rakhimova, M.M., Yusupov, N.Z., Suyarov, K.Dzh., Khasanova, K.G., and Bekbudova, Sh., Russ. J. Inorg. Chem., 2013, vol. 58, no. 8, pp. 972–975.

    Article  CAS  Google Scholar 

  12. Yue, G., Zhao, L., Olvera, O.G., and Asselin, E., Hydrometallurgy, 2014, vols. 147–148, pp. 196–209. https://doi.org/10.1016/j.hydromet.2014.05.008

  13. Dry, M.J. and Bryson, A.W., Hydrometallurgy, 1988, vol. 21, pp. 59–72.

    Article  CAS  Google Scholar 

  14. Guzman, I., Thorpe, S.J., and Papangelakis, V.G., J. Electroanal. Chem., 2017, vol. 799, pp. 399–405. https://doi.org/10.1016/j.jelechem.2017.06.036

    Article  CAS  Google Scholar 

  15. Avdeev, Ya.G., Andreeva, T.E., Panova, A.V., and Yurasova, E.N., Int. J. Corros. Scale Inhib., 2019, vol. 8, no. 2, pp. 411–421. https://doi.org/10.17675/2305-6894-2019-8-2-18

    Article  CAS  Google Scholar 

  16. Belqat, B., Laghzizil, A., Elkacimi, K., Bouhaouss, A., and Belcadi, S., J. Fluorine Chem., 2000, vol. 105, pp. 1–5. https://doi.org/10.1016/S0022-1139(00)00256-6

    Article  CAS  Google Scholar 

  17. Naseem Akhtar, H.M., Shaikh, A.A., and Ehsan, M.Q., Russ. J. Electrochem., 2008, vol. 44, no. 12, pp. 1403–1408. https://doi.org/10.1134/S102319350812015X

    Article  CAS  Google Scholar 

  18. Bridge, M.H., Williams, E., Lyons, M.E.G., Tipton, K.F., and Linert, W., Biochim. Biophys. Acta, 2004, vol. 1690, pp. 77–84. https://doi.org/10.1016/j.bbadis.2004.05.007

    Article  CAS  Google Scholar 

  19. Vatrál, J., Boca, R., and Linert, W., Electrochim. Acta, 2014, vol. 145, pp. 53–63. https://doi.org/10.1016/j.electacta.2014.08.079

    Article  CAS  Google Scholar 

  20. Radhi, M.M., Jaffar Al-Mulla, E.A., and Tan, W.T., Res. Chem. Intermed., 2012, vol. 38, no. 9, pp. 179–192. https://doi.org/10.1007/s11164-012-0954-6

    Article  CAS  Google Scholar 

  21. Xu, Q., Zhao, T.S., Wei, L., Zhang, C., and Zhou, X.L., Electrochim. Acta, 2015, vol. 154, pp. 462–467. https://doi.org/10.1016/j.electacta.2014.12.061

    Article  CAS  Google Scholar 

  22. Chen, Y.-W.D., Santhanam, K.S.V., and Bard, A.J., J. Electrochem. Soc., 1981, vol. 128, no. 7, pp. 1460–1467. https://doi.org/10.1149/1.2127663

    Article  CAS  Google Scholar 

  23. Wen, Y.H., Zhang, H.M., Qian, P., Zhou, H.T., Zhao, P., Yi, B.L., and Yang, Y.S., J. Electrochem. Soc., 2006, vol. 153, no. 5, pp. A929–A934. https://doi.org/10.1149/1.2186040

    Article  CAS  Google Scholar 

  24. Guin, S.K., Chandra, R., and Aggarwal, S.K., Electrochim. Acta, 2010, vol. 55, pp. 8402–8409. https://doi.org/10.1016/j.electacta.2010.07.052

    Article  CAS  Google Scholar 

  25. Avdeev, Ya.G., Andreeva, T.E., and Kuznetsov, Yu.I., Int. J. Corros. Scale Inhib., 2018, vol. 7, no. 3, pp. 366–375. https://doi.org/10.17675/2305-6894-2018-7-3-7

    Article  CAS  Google Scholar 

  26. Techniques of Electrochemistry: Electrode Processes, Yeager, E. and Salkind, A.J., Eds., New York: John Wiley and Sons, 1972, vol. 1.

    Google Scholar 

  27. Zakharov, V.A., Songina, O.A., and Bekturova, G.B., Zh. Anal. Khim., 1976, vol. 31, no. 11, pp. 2212–2221.

    CAS  Google Scholar 

  28. Plambeck, J.A., Electroanalytical Chemistry: Basic Principles and Applications, New York: John Wiley and Sons, 1982.

    Google Scholar 

  29. Pleskov, Yu.V. and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod (Rotating Disk Electrode), Moscow: Nauka, 1972.

  30. Avdeev, Ya.G., Luchkin, A.Yu., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2012, no. 10, pp. 23–27.

  31. Avdeev, Ya.G., Luchkin, A.Yu., Tyurina, M.V., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2015, no. 1, pp. 23–27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. G. Avdeev.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, A.V., Avdeev, Y.G., Andreeva, T.E. et al. Some Thermodynamic and Kinetic Properties of the HCl–H3PO4–H2O–Fe(III) System. Prot Met Phys Chem Surf 57, 1289–1295 (2021). https://doi.org/10.1134/S2070205121070133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121070133

Keywords:

Navigation