Skip to main content
Log in

On the Mechanism of the Growth of Electronic Conductivity upon Reduction in the Excessive Deformation Volume of a Diluted Palladium–Hydrogen System

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A decrease in the excess deformation volume (a kind of “imprint” of the system after the stay of hydrogen in Pd) with an increase in the amount of hydrogen introduced into Pd (starting from H : Pd = 0.25) and then removed electrochemically. In parallel, an increase in the electrical conductivity of electrochemically dihydrogenated palladium hydrides by 12% in comparison with the initial samples of pure palladium in a wide temperature range (75–300 K) was recorded. This means that some of the hydrogen in the Pd (about 5.3 × 1015 atoms per sample) passed into a more compressed, highly conductive phase. In this case, an increase in electrical conductivity with respect to pure Pd can occur both due to the formation and propagation of highly conductive regions of palladium hydride and due to electron transfer (percolation, tunneling) between individual nanoclusters of quasi-metallic hydrogen, localized in the region of metal structural defects, namely, in vacancy clusters and inside the cores of edge dislocations, where the highest pressures in the lattice are achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Hydrogen in Metals I: Basic Properties, Alefeld, G. and Völkl, J., Eds., Berlin: Springer, 1978.

    Google Scholar 

  2. Schirber, J.E. and Morosin, B., Phys. Rev. B, 1975, vol. 12, p. 117.

    Article  CAS  Google Scholar 

  3. Lomovskoi, V.A., Lyakhov, B.F., Lomovskaya, N.Yu., and Bellyaev, E.G., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 3, p. 375.

    Article  CAS  Google Scholar 

  4. Solodkova, L.N., Lyakhov, B.F., Lipson, A.G., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, p. 524.

    Article  CAS  Google Scholar 

  5. Bardyshev, I.I., Lyakhov, B.F., Polukarov, Yu.M., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 5, p. 680.

    Article  CAS  Google Scholar 

  6. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., and Shylin, S.I., Nature, 2015, vol. 525, p. 73.

    Article  CAS  Google Scholar 

  7. Somayazulu, M., Ahart, M., Mishra, A.K., Geballe, Z.M., Baldini, M., Meng, Y., Struzhkin, V.V., and Hemley, R.J., Phys. Rev. Lett., 2019, vol. 122, p. 027001.

    Article  CAS  Google Scholar 

  8. Liu, H., Naumov, I.I., Hoffmann, R., Ashcroft, N.W., and Hemley, R.J., Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, p. 6990.

    Article  CAS  Google Scholar 

  9. Kawae, T., Inagaki, Y., Wen, S., Hirota, S., Itou, D., and Kimura, T., J. Phys. Soc. Jpn., 2020, vol. 89, p. 051004. https://doi.org/10.7566/JPSJ.89.051004

    Article  Google Scholar 

  10. Ashcroft, N.W., Phys. Rev. Lett., 1968, vol. 11, p. 1748.

    Article  Google Scholar 

  11. Brovman, E.G., Kagan, Yu.A., and Kholas, A.S., Zh. Eksp. Teor. Fiz., 1972, vol. 62, no. 4, p. 1492.

    CAS  Google Scholar 

  12. Chachan, H. and Louie, S.G., Phys. Rev. Lett., 1991, vol. 66, p. 64.

    Article  Google Scholar 

  13. Garcia, A., Barbee, T.W., Cohen, M.L., and Silvera, I.F., Europhys. Lett., 1990, vol. 13, p. 355.

    Article  CAS  Google Scholar 

  14. Ashcroft, N.W., Phys. Rev. Lett., 2004, vol. 92, p. 187002.

    Article  CAS  Google Scholar 

  15. Brodowsky, H., Z. Phys. Chem., 1965, vol. 44, p. 129.

    Article  CAS  Google Scholar 

  16. Lipson, A.G., Lyakhov, B.F., Sakov, D.M., and Kuznetsov, V.A., Fiz. Tverd. Tela, 1997, vol. 39, no. 12, p. 2113.

    CAS  Google Scholar 

  17. Morozov, A.N. and Sigov, A.S., Usp. Fiz. Nauk, 1994, vol. 164, no. 3, p. 243.

    Article  Google Scholar 

  18. Hydrogen in Metals II: Application-Oriented Properties, Alefeld, G. and Völkl, J., Eds., Berlin: Springer, 1978.

    Google Scholar 

  19. Subramaniam, P.K., Comprehensive Treatise of Electrochemistry, New York: Plenum Press, 1981, vol. 4, p. 411.

    Google Scholar 

  20. Lyakhov, B.F., Bovenko, V.N., Danilov, A.I., Urin, O.V., Molodkina, E.B., Zagorskii, V.Z., Polukarov, Yu.M., and Kudryavtsev, V.N., Russ. J. Electrochem., 1996, vol. 32, no. 5, pp. 528–534.

    CAS  Google Scholar 

  21. Lyakhov, B.F., Solodkova, L.N., Anufriev, N.G., Vashchenko, S.V., Bardyshev, I.I., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 5, pp. 923–928.

    Article  Google Scholar 

  22. Lyakhov, B.F., Solodkova, L.N., Vashchenko, S.V., Bardyshev, I.I., Tsivadze, A.Yu., Puryaeva, T.P., and Chernyshev, V.V., Theor. Found. Chem. Eng., 2014, vol. 48, no. 6, pp. 793–798.

    Article  CAS  Google Scholar 

  23. Demishev, S.V., Kosichkin, Yu.V., Lyapin, A.S., et al., Pis’ma Zh. Eksp. Teor. Fiz., 1993, vol. 56, no. 1, p. 44.

    Google Scholar 

  24. Lipson, A., Heuser, B.J., Castano, C., Miley, G., Lyakhov, B., and Mitin, A., Phys. Rev. B, 2005, vol. 72, p. 212507.

    Article  Google Scholar 

  25. Lipson, G., et al., Phys. Lett. A, 2005, vol. 339, p. 414.

    Article  CAS  Google Scholar 

  26. Hirth, J.P. and Lothe, J., Theory of Dislocations, Malabar, FL: Krieger Publ., 1982.

    Google Scholar 

  27. Tripodi, P., Di Gioacchino, D., and Vinko, J.D., J. Alloys Compd., 2009, vol. 470, pp. L6–L8.

    Article  CAS  Google Scholar 

  28. Grant, P.M., Parkin, S.S., Lee, V.Y., et al., Phys. Rev. Lett., 1987, vol. 58, p. 2482.

    Article  CAS  Google Scholar 

  29. Kotenev, V.A., Vysotskii, V.V., Averin, A.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 454–461.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhov, B.F., Kotenev, V.A. & Tsivadze, A.Y. On the Mechanism of the Growth of Electronic Conductivity upon Reduction in the Excessive Deformation Volume of a Diluted Palladium–Hydrogen System. Prot Met Phys Chem Surf 58, 65–69 (2022). https://doi.org/10.1134/S2070205121060150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121060150

Navigation