Skip to main content
Log in

A Study of the Change in the Surface Layer Structure of Microfiltration Films of MMPA, MPS, and MFFK

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This work has investigated changes in crystallinity and amorphism in the surface layers of commercial microfiltration films. Experimental studies of supramolecular formations and changes in the structure of microfiltration films were carried out by differential scanning calorimetry and X-ray diffractometric measurements in reflection geometry in the region of large angles. In the process of water swelling of semipermeable films of the MMPA, MPS, and МFFK types, a change in the structure of the lattice of the films is observed due to an increase in the interatomic distance, that is, the size of the pore diameter is likely to change throughout the structure of both the active layer and the film substrate. The observed changes in the supramolecular structure of the films upon swelling occur to a greater extent due to the disordering of macrochains in all layers of the films. The decrease in the degree of crystallinity of the films upon sorption of water is most likely associated with the redistribution of the ratio between the number of perfect crystalline phases in polyamide crystallites with different values of the enthalpy of melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Elyashevich, G.K., Kuryndin, I.S., Lavrentyev, V.K., Popova, E.N., and Bukošek, V., Phys. Solid State, 2018, vol. 60, no. 10, p. 2019.

    Article  CAS  Google Scholar 

  2. Vol’fkovich, Yu.M., Kardash, M.M., Kononenko, N.A., Aleksandrov, G.V., and Chernyaeva, M.A., Russ. J. Electrochem., 2013, vol. 49, no. 12, p. 1115.

    Article  Google Scholar 

  3. Hossieny, N., Shaayega, V., Ameli, A., Saniei, M., and Park, C.B., Polymer, 2017, vol. 112, p. 208.

    Article  CAS  Google Scholar 

  4. Xu, W., Zhang, R., Liu, W., Zhu, J., Dong, X., Go, H., and Hu, G.H., Macromolecules, 2016, vol. 49, p. 5931.

    Article  CAS  Google Scholar 

  5. Fernández-D’Arlas, B., Balko, J., Baumann, R.P., Pöselt, E., Dabbous, R., Eling, B., Thurn-Albrecht, T., and Müller, A.J., Macromolecules, 2016, vol. 49, p. 7952.

    Article  Google Scholar 

  6. Toroghi, M., Raisi, A., and Aroujalian, A., Polym. Adv. Technol., 2014, vol. 25, p. 711.

    Article  CAS  Google Scholar 

  7. Amouamouha, M. and Badalians Gholikandi, G., Membranes (Basel), 2017, vol. 12, no. 7 (4), p. 64.

  8. Ronova, I.A., Kryuchkova, S.V., Yablokova, M.Y., Alentiev, A.Y., Gasanova, L.G., Buzin, M.I., and Kepman, A.V., High Perform. Polym., 2018, vol. 30, no. 1, p. 58.

    Article  CAS  Google Scholar 

  9. Aslamazova, T.R., Zolotarevskii, V.I., Kotenev, V.A., Lomovskaya, N.Y., Lomovskoi, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, p. 1081.

    Article  CAS  Google Scholar 

  10. Belova, T., Ershova, L., and Ratchina, T., Sorbtsionnye Khromatogr. Protsessy, 2019, vol. 19, no. 6, p. 673.

    Google Scholar 

  11. Kryuchkova, S.V., Yablokova, M.Yu., Alentiev, A.Yu., Gasanova, L.G., and Kepman, A.V., Moscow Univ. Chem. Bull., 2017, vol. 72, no. 3, p. 120.

    Article  Google Scholar 

  12. Fedotova, A.V., Shaikhiev, I.G., Dryakhlov, V.O., Abdullin, I.Sh., and Sverguzova, S.V., Vestn. Belgorod. Gos. Tekhnol. Univ. im. V. G. Shukhova, 2016, no. 5, p. 167.

  13. Panov, Yu.T., Tarasov, A.V., Lepeshin, S.A., and Ermolaeva, E.V., Sovrem. Naukoemkie Tekhnol., 2015, no. 12-2, p. 258.

  14. Bureau, M.N., Denaulty, J., Cole, K.C., and Enright, G.D., Polym. Eng. Sci., 2002, vol. 42, p. 1897.

    Article  CAS  Google Scholar 

  15. Li, L., Li, C.Y., Ni, C., Rong, L., and Hsiao, B., Polymer, 2007, vol. 48, p. 3452.

    Article  CAS  Google Scholar 

  16. Lu, Y., Zhang, Y., Zhang, G., Yang, M., Yan, S., and Shen, D., Polymer, 2004, vol. 45, p. 8999.

    Article  CAS  Google Scholar 

  17. Kochervinskii, V.V., Usp. Khim.,1996, no. 10 (65), p. 936.

  18. Antonova, L.V., Matveeva, V.G., Tverdokhlebov, S.I., and Buznik, V.M., Polim. Mater. Tekhnol., 2016, vol. 2, no. 4, p. 30.

    Google Scholar 

  19. Bellare, A., Cohen, R.E., and Argon, A.S., Polymer, 1993, vol. 34, p. 1393.

    Article  CAS  Google Scholar 

  20. Starkweather, H.W., Jr., Zoller, P., and Jones, G.A., J. Polym. Sci., Polym. Phys. Ed., 1984, vol. 22, p. 1615.

    Article  CAS  Google Scholar 

  21. Lipatov, Yu.S., Spravochnik po khimii polimerov (Handbook on Chemistry of Polymers), Kiev: Naukova Dumka, 1971.

  22. Spetspraktikum (Special Practical Course), Shibaev, V.P., Ed., Moscow: Moscow State Univ., 2013.

    Google Scholar 

  23. Kunugi, T., Chida, K., and Suzuki, A., J. Appl. Polym. Sci.,1998, vol. 67, p. 1993.

    Article  CAS  Google Scholar 

  24. Zaroulis, J.S. and Boyce, M.C., Polymer, 1997, vol. 38, p. 1303.

    Article  CAS  Google Scholar 

  25. Teyssedre, G., Bernes, A., and Lacabanne, C., J. Polym. Sci., Part B: Polym. Phys., 1993, vol. 31, no. 13, p. 2027.

    Article  CAS  Google Scholar 

  26. Priya, J.P., J. Polym. Sci., Part B: Polym. Phys., 2002, vol. 41, p. 31.

    Article  Google Scholar 

  27. Water in Polymers, Rowland, S.P., Ed., Washington, DC: Regional Research Center, American Chemical Society, 1980.

    Google Scholar 

  28. Kohan, M., Nylon Plastics Handbook, Cincinnati, OH: Hanser/Gardner Publ., 1995.

    Google Scholar 

  29. Li, L., Li, C.Y., Ni, C., Rong, L., and Hsiao, B., Polymer, 2007, vol. 48, p. 3452.

    Article  CAS  Google Scholar 

  30. Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov. Uchebnik dlya vuzov (Chemistry of Wood and Synthetic Polymers. Student’s Book for Institutions of Higher Education), St. Petersburg: St. Petersburg State Forest Technical Univ. under Name of S.M. Kirov, 1999.

  31. Hult, E., Iversen, J., and Sugiyama, J., Cellulose, 2003, no. 10, p. 103.

  32. Technofilter. https://www.technofilter.ru/prod/laboratornaya-filtraciya/filtr-disc/mffk/. Accessed February 10, 2020.

  33. Gregorio, R., J. Appl. Polym. Sci., 2006, vol. 100, pp. 3272–3279.

    Article  CAS  Google Scholar 

  34. Daubeny, R. de P., Bunn, C.W., and Brown, C.J., Proc. R. Soc. A, 1954, vol. 226, p. 531.

    CAS  Google Scholar 

  35. Daubeny, R. de P., Bunn, C.W., and Brown, C.J., Proc. R. Soc. A, 1955, vol. 226, p. 531.

    Google Scholar 

  36. Arkhangelsky, E., Kuzmenko, D., and Gitis, V., J. Membr. Sci., 2007, vol. 305, pp. 176–184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Lazarev or S. V. Kovalev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Kovalev, S.V. et al. A Study of the Change in the Surface Layer Structure of Microfiltration Films of MMPA, MPS, and MFFK. Prot Met Phys Chem Surf 57, 965–973 (2021). https://doi.org/10.1134/S2070205121050166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121050166

Keywords:

Navigation