Skip to main content
Log in

Investigation of Wear Behavior and Diffusion Kinetic Values of Boronized Hardox-450 Steel

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Hardox steels are widely used in the industry as they have many excellent mechanical properties besides good wear resistance. In this study, Hardox-450 steel was boronized at different temperatures (1123, 1173, 1223 K) and holding times (2, 4, 6 h). Following the boronizing process, the morphology of the boride layers formed on the steel surfaces was examined by SEM microscope. Hardness values were measured with microhardness device and phases formed on the layer were analyzed by X-ray diffraction technique. XRD analysis showed that a layer of boride consisting of the Fe2B phase was formed as a single-phase structure. It was also observed that the thickness of the boride layer obtained in boronized Hardox-450 steel increased with the increase in the boronizing time and temperature. While the original hardness values of Hardox-450 steel were 430 HV0.05, as a result of the boriding process, it reached up to 1880 HV0.05. The thickness of the boride layer on Hardox-450 steel and growth kinetics of boride layer were also examined. The activation energy (Q) of boronized Hardox-450 steel was determined as 157.990 kJ/mol. Wear tests were carried out using a ball-disc wear method at a sliding speed of 0.3 m/s under a load of 10 N in a dry environment and at a sliding distance of 500 m. Adhesion properties of the boride layer were examined by Daimler-Benz Rockwell-C indentation test. Wear resistance increased with boriding process. It has been determined that the wear and adhesion resistance decrease with the increase of boronizing temperature and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ivanov, Y., Gromov, V., Konovalov, S., Kormyshev, V., Aksenova, K., and Teresov, A., Mater. Sci. Technol., 2017, vol. 33, no. 17, pp. 2040–2045.

    Article  CAS  Google Scholar 

  2. Hacısalihoglu, I., Yıldız, F., and Çelik, A., Tribol. Int., 2018, vol. 120, pp. 434–445.

    Article  Google Scholar 

  3. Naik, D.K. and Maity, K., Weld. World, 2020, vol. 64, pp. 345–352.

    Article  CAS  Google Scholar 

  4. Prajapati, B.D., Patel, R.J., and Khatri, B.C., Int. J. Emerging Technol. Adv. Eng., 2013, vol. 3, no. 4, pp. 204–208.

    Google Scholar 

  5. Zdravecka, E., Tkacova, J., and Ondac, M., Res. Agric. Eng., 2014, vol. 60, no. 3, pp. 115–120.

    Article  Google Scholar 

  6. Mindivan, H., Procedia Eng., 2013, vol. 68, pp. 710–715.

    Article  CAS  Google Scholar 

  7. Teker, T., Karataş, S., and Yilmaz, O., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 1, pp. 94–103.

    Article  CAS  Google Scholar 

  8. Sinha, A., Int. J. Heat Treat., 1991, vol. 4, pp. 437–447.

    Google Scholar 

  9. Kariofillis, G.K., Kiourtsidis, G.E., and Tsipas, D.N., Surf. Coat. Technol., 2006, vol. 201, pp. 19–24.

    Article  CAS  Google Scholar 

  10. Kayali, Y., J. Balk. Tribol. Assoc., 2013, vol. 19, no. 3, pp. 340–353.

    CAS  Google Scholar 

  11. Aichholz, S.A.C., Meruvia, M.S., Júnior, P.C.S., and Torres, R.D., Surf. Coat. Technol., 2018, vol. 352, pp. 265–272.

    Article  Google Scholar 

  12. Erdoğan, A., Surf. Coat. Technol., 2019, vol. 357, pp. 886–895.

    Article  Google Scholar 

  13. Krelling, A.P., Da Costa, C.E., Milan, J.C.G., and Almeida, E.A.S., Tribol. Int., 2017, vol. 111, pp. 234–242.

    Article  CAS  Google Scholar 

  14. Keddam, M. and Taktak, S., Appl. Surf. Sci., 2017, vol. 399, pp. 229–236.

    Article  CAS  Google Scholar 

  15. Subrahmanya, J. and Gopinath, K., Wear, 1984, vol. 95, pp. 287–292.

    Article  Google Scholar 

  16. Ozbek, I. and Bindal, C., Surf. Coat. Technol., 2002, vol. 154, pp. 14–20.

    Article  CAS  Google Scholar 

  17. Gök, M.S., Küçük, Y., Erdoğan, A., Öge, M., Kanca, E., and Günen, A., Surf. Coat. Technol., 2017, vol. 328, pp. 54–62.

    Article  Google Scholar 

  18. Efe, G.Ç., İpek, M., Özbek, İ., and Bindal, C., Mater. Charact., 2008, vol. 59, pp. 23–31.

    Article  CAS  Google Scholar 

  19. Kayalı, Y., Phys. Met. Metallogr., 2013, vol. 114, no. 12, pp. 1061–1068.

    Article  Google Scholar 

  20. Kayali, Y. and Yalçin, Y., J. Mater. Mechat. A, 2020, vol. 1, no. 1, pp. 12–21.

  21. Yu, L.G., Khor, K.A., and Sundararajan, G., Surf. Coat. Technol., 2006, vol. 201, pp. 2849–2853.

    Article  CAS  Google Scholar 

  22. Daimler Benz Adhesion Test, Richtlinien, No. 3198, Verein Deutscher Ingenieure (VDI), Dusseldorf: VDI-Verlag, 1992, pp. 7–12.

  23. Kayalı, Y. and Taktak, Ş., J. Adhes. Sci. Technol., 2015, vol. 29, no. 19, pp. 2065–2075.

    Article  Google Scholar 

  24. Özbek, I., Şen, Ş., İpek, M., Bindal, C., Zeytin, S., and Üçışık, H.A., Vacuum, 2004, vol. 73, pp. 643–648.

    Article  Google Scholar 

  25. Jain, V. and Sundararajan, G., Surf. Coat. Technol., 2002, vol. 149, no. 1, pp. 21–26.

    Article  CAS  Google Scholar 

  26. Taktak, S. and Tasgetiren, S., J. Mater. Eng. Perform., 2006, vol. 15, pp. 570–574.

    Article  CAS  Google Scholar 

  27. Celikyurek, I., Baksan, B., Torun, O., and Gurler, R., Intermetallics, 2006, vol. 14, pp. 136–141.

    Article  CAS  Google Scholar 

  28. Şen, Ş., Şen, U., and Bindal, C., Surf. Coat. Technol., 2005, vol. 191, pp. 274–285.

    Article  Google Scholar 

  29. Uslu, I., Comert, H., Ipek, M., Ozdemir, O., and Bindal, C., Mater. Des., 2007, vol. 28, pp. 55–61.

    Article  CAS  Google Scholar 

  30. Kayalı, Y., Güneş, İ., and Ulu, S., Vacuum, 2012, vol. 86, pp. 1428–1434.

    Article  Google Scholar 

  31. Béjar, M.A. and Moreno, E., J. Mater. Process. Technol., 2006, vol. 173, pp. 352–358.

    Article  Google Scholar 

  32. Barut, N., Yavuz, D., and Kayalı, Y., AKU J. Sci. Eng., 2014, vol. 14, no. 1, pp. 1–8.

    Article  Google Scholar 

  33. Yoon, J.H., Jee, Y.K., and Lee, S.Y., Surf. Coat. Technol., 1999, vol. 112, pp. 71–75.

    Article  CAS  Google Scholar 

  34. Kayalı, Y., Büyüksağiş, A., and Yalçın, Y., J. Met. Mater. Int., 2013, vol. 19, no. 5, pp. 1053–1061.

    Article  Google Scholar 

  35. Turkmen, İ., Yalamac, E., and Keddam, M., Surf. Coat. Technol., 2019, vol. 377, p. 124888.

    Article  CAS  Google Scholar 

  36. Meriç, C., Şahin, S., Backir, B., and Köksal, N.S., Mater. Des., 2006, vol. 27, pp. 751–757.

    Article  Google Scholar 

  37. Şen, S., Özbek, I., Şen, U., and Bindal, C., Surf. Coat. Technol., 2001, vol. 135, pp. 173–177.

    Article  Google Scholar 

  38. Edgar, E.V.C., Roger, L., Armando, I.M.P., Jose, L.B.P., Francisco, J.P.P., Martin, O.D., and Eduardo, D.R.A., Adv. Mech. Eng., 2016, vol. 8, no. 2, pp. 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Kayalı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusuf Kayalı, Rıza Kara Investigation of Wear Behavior and Diffusion Kinetic Values of Boronized Hardox-450 Steel. Prot Met Phys Chem Surf 57, 1025–1033 (2021). https://doi.org/10.1134/S2070205121050129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121050129

Keywords:

Navigation