Skip to main content

Melting and Crystallization of Polypropylene in Mixtures with Some Low-Molecular-Weight Compounds after Plastic Deformation under High Pressure

Abstract

Polypropylene (PP) mixtures (10 wt %) with AgJ, V203, AgNO3, phenolic red, and phenolphthalein underwent plastic deformation at a pressure of 1 GPa on an anvil-type high-pressure device. It has been established by the DSC method that the enthalpy of PP melting in mixtures with inorganic components increased to 310 and 1840 J/g, while the enthalpy of melting was 62 J g–1 in the initial PP. In the deformed mixture with AgNO3, melting was described by a superposition of six endothermic peaks. The enthalpy of PP crystallization from the melt in mixtures with ionic crystals (AgJ, AgNO3) attained 360 and 264 J/g, respectively. Thermograms of mixtures with phenolic red and phenolphthalein showed superpositions of endothermic melting peaks of small polymer crystallites and exothermic peaks of cold crystallization. The enthalpies of endothermic processes in the deformed mixtures with phenolic red and phenolphthalein were identical. In these mixtures, the enthalpies of PP crystallization from the melt were identical to those of cold crystallization.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Hybrid Nanocomposites for Nanotechnology, Mehrani, L., Ed., Springer, 2009.

  2. 2

    Polymer Blends, Paul, D.R. and Newman, S., Eds., New York: Academic Press, 1978.

    Google Scholar 

  3. 3

    Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Fizikokhim. Poverkhn. Zashch. Mater., 2017, vol. 53, no. 4, p. 418.

  4. 4

    Chernyad’ev, A.Yu., Kotenev, V.A., and Tsivadze, A.Yu., Fizikokhim. Poverkhn. Zashch. Mater., 2017, vol. 53, no. 4, p. 408.

  5. 5

    Aslamazova, T.R., Kotenev, V.A., Lomovskaya, N.Y., et al., Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1396.

    CAS  Article  Google Scholar 

  6. 6

    Kestelman, V.N., Pinchuk, L.S., and Goldade, V.A., Electrets in Engineering, Boston, MA: Springer, 2000.

    Book  Google Scholar 

  7. 7

    Rudnev, V.S., Vaganov-Vil’kins, A.A., Tsvetnikov, A.K., Nedozorov, P.M., Yarovaya, T.P., Kuryavyi, V.G., Dmitrieva, E.E., and Kirichenko, E.A., Fizikokhim. Poverkhn. Zashch. Mater., 2015, vol. 51, no. 1, p. 79.

  8. 8

    Shakov, A.A., Petrov, D.A., Rozanov, K.N., Sugaev, A.V., and Lomaeva, S.F., Fizikokhim. Poverkhn. Zashch. Mater., 2017, vol. 53, no. 1, p. 85.

  9. 9

    Kotenev, V.A., Zhorin, V.A., Kiselev, M.R., Vysotskii, V.V., Averin, A.A., Roldugin, V.I., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p. 792.

    CAS  Article  Google Scholar 

  10. 10

    Larsen, H.A. and Drickamer, H.G., J. Phys. Chem., 1957, vol. 61, no. 12, p. 1643.

    CAS  Article  Google Scholar 

  11. 11

    Kryuchkov, A.I., Zhorin, B.A., Prut, E.V., Nikol’skii, V.G., Budnitskii, Yu.M., Akutin, M.S., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1982, vol. 24, no. 1, p. 184.

    CAS  Google Scholar 

  12. 12

    Topics in Applied Physics, vol. 33: Electrets, Sessler, G.M., Ed., New York: Springer, 1980.

    Google Scholar 

  13. 13

    Zhorin, V.A., Vysokomol. Soedin., Ser. A, 1994, vol. 36, no. 4, p. 559.

    CAS  Google Scholar 

  14. 14

    Kuptsov, S.A., Erina, N.A., Zhorin, V.A., Antipov, E.M., and Prut, E.V., Vysokomol. Soedin., Ser. A, 1995, vol. 37, no. 10, p. 1692.

    CAS  Google Scholar 

  15. 15

    Kompaniets, L.V., Krasotkina, I.A., Erina, N.A., Zhorin, V.A., Nikol’skii, V.G., and Prut, E.V., Polym. Sci., Ser. A, 1996, vol. 38, no. 5, p. 491.

    Google Scholar 

  16. 16

    Zhorin, V.A., Kissin, Yu.V., Luizo, Yu.V., Fridman, N.M., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1976, vol. 18, no. 12, p. 2677.

    Google Scholar 

  17. 17

    Zhorin, V.A., Saprygin, O.N., Barashkova, I.I., Litvinov, V.M., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1988, vol. 31, no. 6, p. 1311.

    Google Scholar 

  18. 18

    Zhorin, V.A., Godovskii, Yu.K., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. A, 1982, vol. 24, no. 5, p. 953.

    CAS  Google Scholar 

  19. 19

    Zhorin, V.A. and Kiselev, M.R., Polym. Sci., Ser. A, 2010, vol. 52, no. 3, p. 251.

    Article  Google Scholar 

  20. 20

    Isaev, A.F., Zhorin, V.A., Tumanov, V.V., and Enikolopyan, N.S., Vysokomol. Soedin., Ser. B, 1989, vol. 31, no. 1, p. 6.

    CAS  Google Scholar 

  21. 21

    Kuchmenova, L.Kh., Cand. Sci. (Eng.) Dissertation, Nalchik: Kabardino-Balkarian State Univ. Named after Kh.M. Berbekov, 2014.

  22. 22

    Ushakova, T.M., Starchak, E.E., Krasheninnikov, V.G., Grinev, V.G., Ladygina, T.A., and Novokshonova, L.A., J. Appl. Polym. Sci., 2014, vol. 131, no. 8. https://doi.org/10.1002/app.40151

  23. 23

    Selikhova, V.I., Neverov, V.M., Sinevich, E.A., Tikhomirov, V.S., and Chvalun, S.N., Polym. Sci., Ser. A, 2005, vol. 47, no. 2, p. 103.

    Google Scholar 

  24. 24

    Jie Qiu, Donghua Xu, Junchai Zhao, Yanhua Niu, and Zhigang Wang, J. Polym. Sci., Part B: Polym. Phys., 2008, vol. 46, no. 19, p. 2100.https://doi.org/10.1002/polb.21544

  25. 25

    Bychuk, M.A., Cand. Sci. (Eng.) Dissertation, Moscow: Russian State Univ. Named after A.N. Kosygin (Technologies. Design. Art), 2016.

  26. 26

    Sun, Y.S. and Woo, E.M., Macromolecules, 1999, vol. 32, pp. 7836–7844.

    CAS  Article  Google Scholar 

  27. 27

    Polymer Nanocomposites, Yiu-Wing Mai and Zhong-Zhen Yu, Eds., Woodhead Publ., 2006.

    Google Scholar 

  28. 28

    Sedush, N.G., Cand. Sci. (Phys.-Math.) Dissertation, Moscow: National Research Center “Kurchatov Institute”, 2015.

  29. 29

    Guzhova, A.A., Cand. Sci. (Eng.) Dissertation, Kazan: Kazan National Research Technological Univ., 2016.

  30. 30

    Zhorin, V.A., Lushcheikin, G.A., and Razumovskaya, I.V., Polym. Sci., Ser. A, 2001, vol. 43, no. 12, p. 1286.

    Google Scholar 

  31. 31

    Lushcheikin, G.A., Polimernye elektrety (Polymer Electrets), Moscow: Khimiya, 1984.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Zhorin.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhorin, V.A., Kiselev, M.R. & Kotenev, V.A. Melting and Crystallization of Polypropylene in Mixtures with Some Low-Molecular-Weight Compounds after Plastic Deformation under High Pressure. Prot Met Phys Chem Surf 57, 764–770 (2021). https://doi.org/10.1134/S2070205121040262

Download citation

Keywords:

  • high pressure
  • plastic deformation
  • polypropylene
  • melting
  • crystallization