Skip to main content

The MIL-125 Metal–Organic Framework Structure for Adsorption-Based Accumulation of Methane and Hydrogen


A MIL-125 metal–organic framework structure was synthesized from titanium and 1, 4-benzenedicarboxylic acid. The specific micropore volume of the synthesized sample was found to be W0 = 0.59 cm3/g, and the specific BET surface area was SBET = 1320 m2/g. Analysis of the synthesized material revealed the possibility of its application for accumulating energetically important gases: methane and hydrogen. The adsorption of hydrogen and methane on MIL-125 was experimentally studied within the temperature range of 77−293 K for hydrogen and 213−293 K for methane at absolute pressures up to 1.5 bar. The high heats of methane and hydrogen adsorption on the synthesized sample of about 26 and 14 kJ/mol were evaluated. It was found that, due to narrow pores, the adsorbent may be effective in accumulating methane at high temperatures. MIL-125 exhibited the best adsorption performance for hydrogen. At the temperature of 77 K and atmospheric pressure, the sample can accumulate up to 2.3 wt % hydrogen.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    Yaghi, O.M. and Li, H., J. Am. Chem. Soc., 1995, vol. 117, p. 10401.

    CAS  Article  Google Scholar 

  2. 2

    Yaghi, O.M., Li, G., and Li, H., Nature, 1995, vol. 378, p. 703.

    CAS  Article  Google Scholar 

  3. 3

    Furukawa, H., Cordova, K.E., O’Keeffe, M., and Yaghi, O.M., Science, 2013, vol. 341, p. 974.

    CAS  Article  Google Scholar 

  4. 4

    Zhao, Y., Chem. Mater., 2016, vol. 28, p. 8079.

    CAS  Article  Google Scholar 

  5. 5

    Devic, T. and Serre, C., Chem. Soc. Rev., 2014, vol. 43, p. 6097.

    CAS  Article  Google Scholar 

  6. 6

    Nasalevich, M.A., Hendon, C.H., Santaclara, J.G., et al., Sci. Rep., 2016, vol. 6, p. 23676.

    CAS  Article  Google Scholar 

  7. 7

    Erxleben, A., Coord. Chem. Rev., 2003, vol. 246, p. 203.

    CAS  Article  Google Scholar 

  8. 8

    Yan, Y., Yang, S., Blake, A.J., et al., Acc. Chem. Res., 2014, vol. 47, p. 296.

    CAS  Article  Google Scholar 

  9. 9

    Lu, J.Y., Coord. Chem. Rev., 2003, vol. 246, p. 327.

    CAS  Article  Google Scholar 

  10. 10

    Cui, Y., Chen, B., and Qian, G., Coord. Chem. Rev., 2014, vol. 273, p. 76.

    Article  CAS  Google Scholar 

  11. 11

    Pagis, C., Ferbinteanu, M., Rothenberg, G., et al., ACS Catal., 2016, vol. 6, p. 6063.

    CAS  Article  Google Scholar 

  12. 12

    Low, J.J., Benin, A.I., Jakubczak, P., et al., J. Am. Chem. Soc., 2009, vol. 131, p. 15834.

    CAS  Article  Google Scholar 

  13. 13

    Decoste, J.B., Peterson, G.W., Smith, M.W., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 1486.

    CAS  Article  Google Scholar 

  14. 14

    Nguyen, J.G. and Cohen, S.M., J. Am. Chem. Soc., 2010, vol. 132, p. 4560.

    CAS  Article  Google Scholar 

  15. 15

    Yang, S.J. and Park, C.R., Adv. Mater., 2012, vol. 24, p. 4010.

    CAS  Article  Google Scholar 

  16. 16

    Zhang, W., Hu, Y., Ge, J., et al., J. Am. Chem. Soc., 2014, vol. 136, p. 16978.

    CAS  Article  Google Scholar 

  17. 17

    Canivet, J., Fateeva, A., Guo, Y., et al., Chem. Soc. Rev., 2014, vol. 43, p. 5594.

    CAS  Article  Google Scholar 

  18. 18

    Horcajada, P., Surble, S., Serre, C., et al., Chem. Commun., 2007, vol. 27, p. 2820.

    Article  Google Scholar 

  19. 19

    Lebedev, O.I., Millange, F., Serre, C., et al., Chem. Mater., 2005, vol. 17, p. 6525.

    CAS  Article  Google Scholar 

  20. 20

    Cavka, J.H., Jakobsen, S., Olsbye, U., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 13850.

    Article  CAS  Google Scholar 

  21. 21

    Zhu, J., Li, P.-Z., Guo, W., et al., Coord. Chem. Rev., 2018, vol. 359, p. 80.

    CAS  Article  Google Scholar 

  22. 22

    Schneider, J., Matsuoka, M., Takeuchi, M., et al., Chem. Rev., 2014, vol. 114, p. 9919.

    CAS  Article  Google Scholar 

  23. 23

    Kim, S.-N., Kim, J., Kim, H.-Y., et al., Catal. Today, 2013, vol. 204, p. 85.

    CAS  Article  Google Scholar 

  24. 24

    Dan-Hardi, M., Serre, C., Frot, T., et al., J. Am. Chem. Soc., 2009, vol. 131, p. 10857.

    CAS  Article  Google Scholar 

  25. 25 master/MOFs/MIL-125/2010_PBE/MIL125.cif.

  26. 26

    Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Technique), Moscow: Khimiya, 1976.

  27. 27

    Dubinin, M.M., Adsorbtsiya i poristost' (Adsorption and Porosity), Moscow: Military Academy of Chemical Defense Named after Marshal of the USSR S.K. Timoshenko, 1972.

  28. 28

    Shkolin, A.V. and Fomkin, A.A., Meas. Tech., 2018, vol. 61, no. 4, p. 395.

    CAS  Article  Google Scholar 

  29. 29

    GOST (State Standard) no. R 54500.3-2011 (ISO/IEC 98-3:2008): Uncertainty of Measurement. Part 3. Guide to the Expression of Uncertainty in Measurement, Moscow: Standartinform, 2012.

  30. 30

    Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., et al., Russ. Chem. Bull., 2018, vol. 67, no. 10, p. 1814.

  31. 31

    Shkolin, A.V., Fomkin, A.A., Strizhenov, E.M., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 3, p. 279.

    CAS  Article  Google Scholar 

  32. 32

    Yakovlev, V.Yu., Shkolin, A.V., Fomkin, A.A., et al., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 3, p. 550.

    Article  Google Scholar 

  33. 33

    Fomkin, A.A., Pribylov, A.A., Tkachev, A.G., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 1, p. 1.

    CAS  Article  Google Scholar 

  34. 34

    Dubinin, M.M., in Adsorbtsiya v mikroporakh (Adsorption in Micropores), Dubinin, M.M. and Serpinskii, V.V., Eds., Moscow: Nauka, 1983, p. 186.

  35. 35

    Bretsznajder, S., Własności Gazów i Cieczy, Warszawa: Wydawnictwo Wydawnictwa Naukowo-Techniczne, 1962.

    Google Scholar 

  36. 36

    Yakovlev, V.Yu., Shkolin, A.V., Fomkin, A.A., and Men’shchikov, I.E., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 5, p. 754.

    CAS  Article  Google Scholar 

  37. 37

    Yakovlev, V.Yu., Shkolin, A.V., and Fomkin, A.A., in Sbornik nauchnykh trudov posvyashchennyi 90-letiyu sozdaniya Instituta fizicheskoi khimii i elektrokhimii im. A.N. Frumkina (Collection of Scientific Works Dedicated to the 90-th Anniversary of Creation of Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences), Moscow: Frumkin Institute of Physical Chemistry and Electrochemistry Russ. Acad. Sci., 2019, p. 104.

  38. 38

    Fomkin, A.A. and Sinitsyn, V.A., Prot. Met. Phys. Chem. Surf., 2008, vol. 44, no. 2, p. 150.

    CAS  Google Scholar 

  39. 39

    Shkolin, A.V. and Fomkin, A.A., Russ. Chem. Bull., 2008, vol. 57, no. 9, p. 1799.

    CAS  Article  Google Scholar 

  40. 40

    Shkolin, A.V., Fomkin, A.A., and Potapov, S.V, Russ. Chem. Bull., 2017, vol. 66, no. 4, p. 607.

    CAS  Article  Google Scholar 

  41. 41

    Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., et al., Usp. Khim., 2019, vol. 88, no. 9, p. 925.

    CAS  Article  Google Scholar 

  42. 42

    Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., et al., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, p. 780.

    Article  Google Scholar 

  43. 43

    Ramsahye, N.A., Trens, P., Shepherd, C., et al., Microporous Mesoporous Mater., 2014, vol. 189, p. 222.

    CAS  Article  Google Scholar 

  44. 44

    Zlotea, C., Phanon, D., Mazaj, M., et al., Dalton Trans., 2011, vol. 40, p. 4879.

    CAS  Article  Google Scholar 

  45. 45

    Senkovska, I. and Kaskel, S., Eur. J. Inorg. Chem., 2006, vol. 2006, p. 4564.

    Article  CAS  Google Scholar 

  46. 46

    Jia, J., Lin, X., and Wilson, C., Chem. Commun., 2007, no. 8, p. 840.

  47. 47

    Choi, S.B., Seo, M.J., and Cho, M., Cryst. Growth Des., 2007, vol. 7, p. 2290.

    CAS  Article  Google Scholar 

  48. 48

    Krawiec, P., Kramer, M., Sabo, M., et al., Adv. Eng. Mater., 2006, vol. 8, p. 293.

    CAS  Article  Google Scholar 

  49. 49

    Rowsell, J.L.C. and Yaghi, O.M., J. Am. Chem. Soc., 2006, vol. 128, p. 1304.

    CAS  Article  Google Scholar 

  50. 50

    Lee, J.Y., Olson, D.H., and Pan, L., Adv. Funct. Mater., 2007, vol. 17, p. 1255.

    CAS  Article  Google Scholar 

  51. 51

    Chen, B., Liang, C., and Yang, J., Angew. Chem., Int. Ed., 2006, vol. 45, p. 1390.

    CAS  Article  Google Scholar 

  52. 52

    Chen, B., Ma, S., and Zapata, F., Inorg. Chem., 2006, vol. 45, p. 5718.

    CAS  Article  Google Scholar 

  53. 53

    Chun, H., Dybtsev, D.N., and Kim, H., Chem. - Eur. J., 2005, vol. 11, p. 3521.

    CAS  Article  Google Scholar 

  54. 54

    Ma, S., Wang, X.-S., and Collier, C.D., Inorg. Chem., 2007, vol. 46, p. 8499.

    CAS  Article  Google Scholar 

  55. 55

    Panella, B., Hirscher, M., and Putter, H., Adv. Funct. Mater., 2006, vol. 16, p. 520.

    CAS  Article  Google Scholar 

  56. 56

    Fomkin, A.A., Pribylov, A.A., Murdmaa, K.O., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 3, p. 413.

    CAS  Article  Google Scholar 

Download references


MOF was synthesized in the laboratory of Photoactive Nanocomposite Materials of St. Petersburg State University within the framework of a project of St. Petersburg State University, pure ID: 51124539.


This work was carried out in the framework of state assignment no. 0081-2019-0018, Fundamental physicochemical laws of adsorption, adsorption separation, adsorption-electrochemical ion-exchange processes in nanoporous materials and the basis of targeted synthesis of new adsorbents.

Author information



Corresponding author

Correspondence to O. V. Solovtsova.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solovtsova, O.V., Maevsky, A.V., Poloneeva, D.Y. et al. The MIL-125 Metal–Organic Framework Structure for Adsorption-Based Accumulation of Methane and Hydrogen. Prot Met Phys Chem Surf 57, 672–679 (2021).

Download citation