Skip to main content

Kinetics of Oxidation of Composites Based on Arrays of Multiwalled Carbon Nanotubes and Tin Oxide Obtained by the Magnetron Sputtering Method


The structure, morphology, and chemical state of composites based on arrays of multiwalled carbon nanotubes and tin oxide (SnOx/MWCNT) obtained using the method of magnetron sputtering were studied using the scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and near edge X-ray absorption fine structure methods. It has been shown that porous layers with a defective structure containing Sn(II) and Sn(IV) oxides along with tin metal were formed on the surface of the MWCNT, which were transformed into crystalline Sn(IV) oxide with a tetragonal lattice at a temperature of ~550°C. The special characteristics of the oxidation and crystallization of the composite components depending on the modes of thermal treatment have been studied. It has been demonstrated that varying the modes of thermal treatment enabled nanostructured materials to be formed that differed significantly in structure, morphology, and composition. It has been hypothesized that the special aspects of the transformation of the composite structure in the process of thermal treatment were determined by the presence of contact of the MWCNT surface with atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    Liu, H., Zhang, W., Yu, H., et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 840.

    CAS  Article  Google Scholar 

  2. 2

    Majumdar, S., Nag, P., and Devi, P., Mater. Chem. Phys., 2014, vol. 147, p. 79.

    CAS  Article  Google Scholar 

  3. 3

    Alaf, M. and Akbulut, H., J. Power Sources, 2014, vol. 247, p. 692.

    CAS  Article  Google Scholar 

  4. 4

    Korusenko, P.M., Nesov, S.N., and Bolotov, V.V., J. Alloys Compd., 2019, vol. 793, p. 723.

    CAS  Article  Google Scholar 

  5. 5

    Rahmandoust, M. and Ayatollahi, M.R., Adv. Struct. Mater., 2016, vol. 39, p. 1.

    Article  Google Scholar 

  6. 6

    Long, H., Guo, C., Wei, G., et al., Vacuum, 2019, vol. 166, p. 147.

    CAS  Article  Google Scholar 

  7. 7

    Acauan, L., Dias, A.C., Pereira, M.B., et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 16444.

    CAS  Article  Google Scholar 

  8. 8

    Nesov, S.N., Korusenko, P.M., Bolotov, V.V., et al., Kondens. Sredy Mezhfaznye Granitsy, 2018, vol. 20, p. 237.

    CAS  Google Scholar 

  9. 9

    Alexeeva, O.K. and Fateev, V.N., Int. J. Hydrogen Energy, 2016, vol. 41, p. 3373.

    CAS  Article  Google Scholar 

  10. 10

    Kuz'michev, A.I., Magnetronnye raspylitel’nye sistemy (Magnetron Sputtering Systems), Kyiv: Avers, 2008.

  11. 11

    Berlin, E.B. and Seidman, L.A., Poluchenie tonkikh plenok reaktivnym magnetronnym raspyleniem (Thin Films Synthesizing by means of Reactive Magnetron Sputtering), Moscow: Tekhnosfera, 2014, p. 256.

  12. 12

    Isomura, N., Murai, T., Nomoto, T., et al., J. Synchrotron Radiat., 2017, vol. 24, p. 1.

    Article  Google Scholar 

  13. 13

    Yang, G., Kim, B., Kim, K., et al., RSC Adv., 2015, vol. 5, p. 31861.

    CAS  Article  Google Scholar 

  14. 14

    Li, L., Reich, S., and Robertson, J., Phys. Rev. B, 2005, vol. 72, article ID 184109.

    Article  Google Scholar 

  15. 15

    Latham, C.D., Heggie, M.I., Alatalo, M., et al., J. Phys.: Condens. Matter, 2013, vol. 25, article ID 135403.

    CAS  Google Scholar 

  16. 16

    Korusenko, P.M., Nesov, S.N., Bolotov, V.V., et al., Phys. Solid State, 2017, vol. 59, p. 2045.

    CAS  Article  Google Scholar 

  17. 17

    Mahajan, A., Kingon, A., Kukovecz, A., et al., Mater. Lett., 2013, vol. 90, p. 165.

    CAS  Article  Google Scholar 

  18. 18

    Nesov, S.N., Korusenko, P.M., Bolotov, V.V., et al., Tech. Phys. Lett., 2017, vol. 43, p. 961.

    CAS  Article  Google Scholar 

  19. 19

    Sharma, A., Varshneya, M., Shin., H.J., et al., Curr. Appl. Phys., 2016, vol. 16, p. 1342.

    Article  Google Scholar 

  20. 20

    Manyakin, M.D., Kurganskii, S.I., Dubrovskii, O.I., et al., Mater. Sci. Semicond. Process., 2019, vol. 99, p. 28.

    CAS  Article  Google Scholar 

  21. 21

    Manyakin, M.D., Kurganskii, S.I., Dubrovskii, O.I., et al., Comput. Mater. Sci., 2016, vol. 121, p. 119.

    CAS  Article  Google Scholar 

  22. 22

    Fedoseeva, Yu.V., Bulusheva, L.G., Koroteev, V.O., et al., Appl. Surf. Sci., 2020, vol. 504, article ID 144357.

    CAS  Article  Google Scholar 

  23. 23

    Fedoseeva, Yu.V., Okotrub, A.V., Bulusheva, L.G., et al., Diamond Relat. Mater., 2016, vol. 70, p. 46.

    CAS  Article  Google Scholar 

  24. 24

    Kuznetsova, A., Popova, I., Yates, J.T., et al., J. Am. Chem. Soc., 2001, vol. 123, p. 10699.

    CAS  Article  Google Scholar 

  25. 25

    Wang, L., Han, J., Zhu, Y., et al., J. Phys. Chem. C, 2015, vol. 119, p. 26327.

    CAS  Article  Google Scholar 

  26. 26

    Nesov, S.N., Korusenko, P.M., Povoroznyuk, S.N., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 410, p. 222.

    CAS  Google Scholar 

  27. 27

    Sivkov, V.N., Ob”edkov, A.M., Petrova, O.V., et al., Phys. Solid State, 2020, vol. 62, no. 1, p. 214.

    CAS  Article  Google Scholar 

Download references


The authors are grateful to the staff of the Omsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences: V.E. Roslikov for the creation of composites by the method of magnetron sputtering. The authors are also grateful to the management of the Omsk Regional Shared Equipment Center SB RAS for providing equipment for the analysis of samples by SEM and EDX methods and to the administration of the Russian–German channel of the BESSY II electron storage ring as well as D.A. Smirnov (beamline scientist at the RGL-PES station) for assistance in conducting studies by the NEXAFS method.


This work was carried out within the governmental order for Omsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences (project registration number 121021600004-7).

Author information



Corresponding author

Correspondence to P. M. Korusenko.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nesov, S.N., Korusenko, P.M., Bolotov, V.V. et al. Kinetics of Oxidation of Composites Based on Arrays of Multiwalled Carbon Nanotubes and Tin Oxide Obtained by the Magnetron Sputtering Method. Prot Met Phys Chem Surf 57, 735–744 (2021).

Download citation


  • multiwall carbon nanotubes
  • tin oxide
  • composites
  • magnetron sputtering
  • oxidation
  • crystallization
  • electron microscopy
  • X-ray absorption spectroscopy
  • synchrotron radiation