Skip to main content
Log in

Elevated Temperature Wear Behavior of FeCr Slag Coating as an Alternative Coating Material for Caster Rolls

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The aim of this study is to show that ferrochrome (FeCr) slag, an industrial waste material, can be used as an alternative protective coating material in service conditions for the caster roll surfaces used in the continuous casting line of steelmaking. Atmospheric plasma spray (APS) method was utilized in coating processes. Considering the working conditions of continuous casting production line, the Thermal Barrier Coating (TBC) system was used as a basis for deposition processes. For production of the TBC system, the commercial NiCoCrAlY (Amdry, 45 + 5 µm) coating powder was initially deposited as metallic bond coat layer onto the surface of AISI 316L substrate, and then FeCr slag layer was successfully deposited as the top coating layer. After the deposition of FeCr slag powder, the resulting coating layer was found to have low porosity with a homogeneous microstructure. Dry sliding wear tests were performed under different loads (7N, 10N and 13N) and temperatures (200, 400 and 600°C) using a ball-on-disc test rig with heating unit. At low loads (7N, 10N) and temperatures (200, 400°C), predominantly spallation type abrasion was observed, while at high load and temperatures (13N, 600°C), the formation of tribolayer and delamination were the dominant wear mechanisms on the surface of FeCr slag coatings. According to the test results, it can be said that FeCr slag powder is a suitable candidate as a protective coating material against adhesive wear at elevated temperatures for caster rolls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Pawlowski, L., The Science and Engineering of Thermal Spray Coatings, Chichester: Wiley, 1995.

    Google Scholar 

  2. Handbook of Thermal Spray Technology, Davis, J.R., Ed., Materials Park, OH: ASM Int., 2004.

    Google Scholar 

  3. Matthews, S. and James, B., J. Therm. Spray Technol., 2010, vol. 19, no. 6, pp. 1267–1276.

    Article  CAS  Google Scholar 

  4. Guthrie, R.I.L. and Jonas, J.J., Steel Processing Technology, in ASM Handbook, vol. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, Steiner, R., Ed., Materials Park, OH: ASM Int., pp. 107–125.

  5. Lankford, W., Samways, N., Craven, R., and McGannon, H., The Making, Shaping and Treating of Steel, United States Steel Corp., 1985.

    Google Scholar 

  6. Sanz, A., Surf. Coat. Technol., 2001, vols. 146–147, pp. 55–64.

    Article  Google Scholar 

  7. Lavin, P., Int. Patent WO 98/21379, 1998.

  8. Allcock, B.W. and Lavin, P.A., Surf. Coat. Technol., 2003, vols. 163–164, pp. 62–66.

    Article  Google Scholar 

  9. Yasniy, P., Maruschak, P., Lapusta, Y., Hlado, V., and Baran, D., Mech. Adv. Mater. Struct., 2008, vol. 15, nos. 6–7, pp. 499–507.

    Article  CAS  Google Scholar 

  10. Sanz, A., Surf. Coat. Technol., 2004, vols. 177–178, pp. 1–11.

    Article  Google Scholar 

  11. Satoh, Y., Yamamura, T., and Takimoto, T., Kawasaki Steel Tech. Rep., 2001, vol. 45, pp. 42–49.

    Google Scholar 

  12. Berger, L.M., Stahr, C.C., Saaro, S., Thiele, S., Woydt, M., and Kelling, N., Wear, 2009, vol. 267, pp. 954–964.

    Article  CAS  Google Scholar 

  13. Sato, Y., Midorikawa, S., Iwashita, Y., Yokogawa, A., and Takano, T., Kawasaki Steel Tech. Rep., 1993, no. 29, pp. 74–82.

  14. Harada, Y. and Shigemura, S., Jpn. Patent JP2006290547, 2006.

  15. Shibata, M., Midorikawa, S., and Kumakawa, M., Jpn. Patent JP10118707, 1998.

  16. Suhara, M., Katayama, Y., and Hirata, K., Jpn. Patent JP5306447, 1993.

  17. Takeda, K., Ito, M., and Takeuchi, S., Pure Appl. Chem., 1990, vol. 62, no. 9, pp. 1773–1782.

    Article  CAS  Google Scholar 

  18. Tsuyuki, A., Kitagawa, K., and Tsukasaki, K., Jpn. Patent JP11158669, 1999.

  19. Liu, C., Liu, L., Tan, K., Zhang, L., Tang, K., and Shi, X., Ceram. Int., 2016, vol. 42, pp. 734–742.

    Article  CAS  Google Scholar 

  20. Huang, S.H., Peng, B., Yang, Z.H., Chai, L.Y., Xu, Y.Z., and Su, C.Q., Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 756–764.

    Article  CAS  Google Scholar 

  21. Lind, B.B., Fällman, A.M., and Larsson, L.B., Waste Manage., 2001, vol. 21, pp. 255–264.

    Article  CAS  Google Scholar 

  22. Zelić, J., Cem. Concr. Res., 2005, vol. 35, pp. 2340–2349.

    Article  Google Scholar 

  23. Oge, M., Kucuk, Y., Gok, M.S., and Karaoglanli, A.C., Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 2283–2298. https://doi.org/10.1111/ijac.13273

    Article  CAS  Google Scholar 

  24. Kucuk, Y., Oge, M., Gok, M.S., and Karaoglanli, A.C., Int. J. Appl. Ceram. Technol., 2018, vol. 15, p. 1240.

    Article  CAS  Google Scholar 

  25. Haga, T., Takahashi, K., Ikawa, M., and Watari, H., J. Mater. Process. Technol., 2003, vol. 140, nos. 1–3, pp. 610–615.

    Article  CAS  Google Scholar 

  26. Sahoo, S., J. Metall., 2016, vol. 2016, article ID 1038950. https://doi.org/10.1155/2016/1038950

    Article  CAS  Google Scholar 

  27. Kittaka, S., Uehara, M., Sato, T., and Higashi, H., Nippon Steel Tech. Rep., 2000, no. 82, pp. 65–70.

  28. Padture, N.P., Gell, M., and Jordan, E.H., Science, 2002, vol. 296, pp. 280–284.

    Article  CAS  Google Scholar 

  29. Ndlovu, S., Simate, G.S., and Matinde, E., Waste Production and Utilization in the Metal Extraction Industry, Boca Raton, FL: CRC Press, 2017.

    Book  Google Scholar 

  30. Sahu, N., Biswas, A., and Kapure, G.U., Miner. Process. Extr. Metall. Rev., 2016, vol. 37, no. 4, p. 211.

    Article  CAS  Google Scholar 

  31. Ramesh, S., Yaghoubi, A., Sara Lee, K.Y., Christopher, C.K.M., Purbolaksono, J., Hamdi, M., and Hassan, M.A., J. Mech. Behav. Mater.,2013, vol. 25, pp. 63–69.

    Article  CAS  Google Scholar 

  32. Von Helden, S., Malzbender, J., and Krüger, M., Ceram. Int., 2019, vol. 45, pp. 10765–10775.

    Article  CAS  Google Scholar 

  33. Rynio, C., Hattendorf, H., Klöwer, J., and Eggeler, G., Wear, 2014, vol. 315, nos. 1–2, pp. 1–10.

    Article  CAS  Google Scholar 

  34. Conceição, L.D. and D’Oliveira, A.S.C.M., Surf. Coat. Technol., 2016, vol. 288, pp. 69–78.

    Article  Google Scholar 

  35. Wang, Y. and Hsu, S.M., Wear, 1996, vol. 195, pp. 90–99.

    Article  CAS  Google Scholar 

  36. Liu, C.X. and Sun, J.L., J. Alloys Compd., 2018, vol. 743, pp. 268–273.

    Article  CAS  Google Scholar 

  37. Shyu, R.F. and Ho, C.T., J. Mater. Process. Technol., 2006, vol. 171, pp. 411–416.

    Article  CAS  Google Scholar 

  38. Thangarasu, A., Murugan, N., Dinaharan, I., and Vijay, S.J., Arch. Civ. Mech. Eng., 2015, vol. 15, pp. 324–334.

    Article  Google Scholar 

  39. Ding, Y. and Rieger, N.F., Wear, 2003, vol. 254, no. 12, pp. 1307–1317.

    Article  CAS  Google Scholar 

  40. Ding, Y. and Gear, J.A., Wear, 2009, vol. 267, no. 5, pp. 1181–1190.

    Article  CAS  Google Scholar 

  41. Stachowiak, G.W. and Batchelor, A.W., Engineering Tribology, Elsevier, 2014.

    Google Scholar 

Download references

Funding

This study was financially supported by TUBITAK (The Scientific and Technological Research Council of Turkey) with project no. 113M178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yılmaz Küçük.

Ethics declarations

This work was patented by Turkish Patent and Trademark Office with patent no: TR201502515B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz Küçük, Mecit Öge Elevated Temperature Wear Behavior of FeCr Slag Coating as an Alternative Coating Material for Caster Rolls. Prot Met Phys Chem Surf 58, 119–128 (2022). https://doi.org/10.1134/S2070205121040146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121040146

Keywords:

Navigation