Skip to main content

Time Dependent Ambient Oxidation of AA6061-T6 Alloy at the Temperature of 580°C


The AA6061-T6 alloy is used in many industrial applications such as hydraulic pistons, aerospace and marine vehicle fittings, including the nuclear reactors due to their excellent joining and coating properties, high strength, good formability, high resistance to aquatic corrosion and neutron transparency. This study consists of high temperature oxidation for which the samples were oxidized using thermogravimetric analysis, at a temperature of 580°C in an atmosphere that contains air and argon. Exposure of exposure times at 580°C varied from 15 min to 8 h, which permitted to understand the mechanism of oxide formation mechanisms in this alloy and progressive formation of oxide layers on the surface. The chemistry, thickness and the morphology of the oxide layer formed on the surface was characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction which revealed the existence of the following elements in the oxide layer, such as Al2O3, Al9Si, SiO2, MgO and Mg3O4. Results showed that the oxide layer becomes thicker with the increasing exposure time and is accompanied by a loss of weight compared to the mass formed at the beginning of the thermogravimetric analysis.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.


  1. 1

    Rekik, W., Ancelet, O., and Gardin, C., Procedia Struct. Integr., 2016, vol. 2, pp. 3491–3500.

    Article  Google Scholar 

  2. 2

    Vincent, S., et al., Proc. 20ème Congrès Français de Mécanique, Besançon, Août 28–Septembre 2, 2011, p. 25044.

  3. 3

    Mansourinejad, M. and Mirzakhani, B., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, no. 9, pp. 2072–2079.

    CAS  Article  Google Scholar 

  4. 4

    Yao, J.-Y., et al., Micron, 2001, vol. 32, no. 8, pp. 865–870.

    CAS  Article  Google Scholar 

  5. 5

    Zandbergen, H., Andersen, S., and Jansen, J., Science, 1997, vol. 277, no. 5330, pp. 1221–1225.

    CAS  Article  Google Scholar 

  6. 6

    Lodgaard, L. and Ryum, N., Mater. Sci. Technol., 2000, vol. 16, no. 6, pp. 599–604.

    CAS  Article  Google Scholar 

  7. 7

    Gaber, A., et al., J. Alloys Compd., 2007, vol. 429, nos. 1–2, pp. 167–175.

    CAS  Article  Google Scholar 

  8. 8

    Beck, A., et al., Corros. Sci., 1967, vol. 7, no. 1, pp. 1–22.

    CAS  Article  Google Scholar 

  9. 9

    Wang, Y., Li, H.-T., and Fan, Z., Trans. Indian Inst. Met., 2012, vol. 65, no. 6, pp. 653–661.

    CAS  Article  Google Scholar 

  10. 10

    Tenório, J.A. and Espinosa, D.C., Oxid. Met., 2000, vol. 53, nos. 3–4, pp. 361–373.

    Article  Google Scholar 

  11. 11

    Park, K.-T., Lavernia, E.J., and Mohamed, F.A., Acta Metall. Mater., 1994, vol. 42, no. 3, pp. 667–678.

    CAS  Article  Google Scholar 

  12. 12

    Elahi, S.H., Abdi, H., and Shahverdi, H., Rev. Sci. Instrum., 2014, vol. 85, no. 1, p. 015115.

    Article  Google Scholar 

  13. 13

    Prescott, R. and Graham, M., Oxid. Met., 1992, vol. 38, nos. 3–4, pp. 233–254.

    CAS  Article  Google Scholar 

  14. 14

    Jeurgens, L., et al., Thin Solid Films, 2002, vol. 418, no. 2, pp. 89–101.

    CAS  Article  Google Scholar 

  15. 15

    Landolt, D., Corrosion and Surface Chemistry of Metals, CRC Press, 2007.

    Book  Google Scholar 

  16. 16

    Bergsmark, E., Simensen, C., and Kofstad, P., Mater. Sci. Eng., A, 1989, vol. 120, pp. 91–95.

    Article  Google Scholar 

  17. 17

    Wang, M.-J., et al., Trans. Nonferrous Met. Soc. China, 2014, vol. 24, no. 7, pp. 2168–2173.

    CAS  Article  Google Scholar 

  18. 18

    Maisonnette, D., Influences mécaniques et métallurgiques de procédés haute température sur un alliage d’aluminium 6061–T6, Villeurbanne: INSA, 2010.

    Google Scholar 

  19. 19

    Dehnavi, V., et al., Surf. Coat. Technol., 2014, vol. 251, pp. 106–114.

    CAS  Article  Google Scholar 

  20. 20

    Jeniski, R., Jr., Mater. Sci. Eng., A, 1997, vol. 237, no. 1, pp. 52–64.

    Article  Google Scholar 

  21. 21

    Qin, Z., et al., Proc. 2nd Int. Symposium on Aluminium Surface Science and Technology (ASST 2000), Manchester, 2000, p. 10.

  22. 22

    Rajasekaran, B., et al., Surf. Coat. Technol., 2008, vol. 202, no. 8, pp. 1462–1469.

    CAS  Article  Google Scholar 

  23. 23

    Maruyama, T. and Yanagihara, K., Mater. Sci. Eng., A, 1997, vol. 239, pp. 828–841.

    Article  Google Scholar 

  24. 24

    Hakem, M., et al., Int. J. Adv. Manuf. Technol., 2019, pp. 1–12.

  25. 25

    Qin, Z., et al., Proc. 17th Canadian Conference on Surface Science, London, ON: Univ. of Western Ontario, 2000.

  26. 26

    Gimenez, Ph., Rameau, J.J., and Reboul, M., Diagramme experimental potentiel pH de l’aluminium pour l’eau de mer, Revue de l’aluminium, 1982, pp. 261–272.

  27. 27

    Vargel, C., Corrosion of Aluminium, chap. B1: Introduction to the Corrosion of Aluminium, 2004, Amsterdam: Elsevier, pp. 81–109.

Download references

Author information



Corresponding author

Correspondence to Samir Attafi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samir Attafi, Aklouche-benouaguef, S. & TALAŞ, Ş. Time Dependent Ambient Oxidation of AA6061-T6 Alloy at the Temperature of 580°C. Prot Met Phys Chem Surf 57, 786–795 (2021).

Download citation


  • high-temperature oxidation
  • AA6061-T6 aluminium alloy
  • oxygen diffusion
  • thickness
  • oxide layer
  • interface
  • degradation