Skip to main content

Plasma Electrolytic Synthesis and Characteristics of WO3–FeO–Fe2O3 and WO3–FeO–Fe2(WO4)3 Heterostructures


Fe- and W-containing oxide heterostructures were formed on a titanium surface by plasma electrolytic oxidation in an alkaline tungstate–borate electrolyte containing complex Fe(III)-EDTA ions at anodic current densities of 0.1 and 0.2 A/cm2. According to the data of X-ray diffraction analysis, the composition of all the formed samples is dominated by tungsten oxide WO3 in a cubic modification. In addition, oxide layers obtained at a current density of 0.1 A/cm2 contain Na0.28WO3, Fe2O3, and TiO2 in modifications of rutile and anatase, while the coatings obtained at a current density of 0.2 A/cm2 contain crystalline phases of wustite FeO and Fe2 (WO4)3. The band gap determined by the Tauc method for a direct allowed transition is 2.64 eV for all samples. All formed coatings exhibit photocatalytic activity in the decomposition reaction of methyl orange (20 mg/L, pH 3.3) in the presence of hydrogen peroxide under UV irradiation. The coatings obtained at a current density of 0.1 A/cm2 are active in degradation of methyl orange solution at pH 5.9 (close to the pH of wastewater).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Chen, Z.G., Ma, H.J., Xia, J.X., Zeng, J., Di, J., Yin, S., Xu, L., and Li, H.M., Ceram. Int., 2016, vol. 43, no. 7, pp. 8997–9003.

    CAS  Article  Google Scholar 

  2. 2

    Cao, X., Chen, Y., Jiao, S.H., Fang, Z.X., Xu, M., Liu, X., Li, L., Pang, G.S., and Feng, S.H., Nanoscale, 2014, vol. 6, no. 21, pp. 12366–12370.

    CAS  Article  Google Scholar 

  3. 3

    Sun, B., Liu, Y.H., and Chen, P., Scr. Mater., 2014, vol. 89, pp. 17–20.

    CAS  Article  Google Scholar 

  4. 4

    Hu, W.B., Zhao, Y.M., Liu, Z.L., Dunnill, C.W., Gregory, D.H., and Zhu, Y.Q., Chem. Mater., 2008, vol. 20, no. 17, pp. 5657–5665.

    CAS  Article  Google Scholar 

  5. 5

    He, G.L., Chen, M.J., Liu, Y.Q., Li, X., Liu, Y.J., and Xu, Y.H., Appl. Surf. Sci., 2015, vol. 351, pp. 474–479.

    CAS  Article  Google Scholar 

  6. 6

    Gao, Q.X. and Liu, Z.J., Prog. Nat. Sci.: Mater. Int., 2017, vol. 27, no. 5, pp. 556–560.

    CAS  Article  Google Scholar 

  7. 7

    Zhang, J., Zhang, Y., Yan, J.Y., Li, S.K., Wang, H.S., Huang, F.Z., Shen, Y.H., and Xie, A.J., J. Nanopart. Res., 2012, vol. 14, no. 4, article no. 796.

    CAS  Article  Google Scholar 

  8. 8

    Zhou, Y.X., Yao, H.B., Zhang, Q., Gong, J.Y., Liu, S.J., and Yu, S.H., Inorg. Chem., 2009, vol. 48, no. 3, pp. 1082–1090.

    CAS  Article  Google Scholar 

  9. 9

    Sun, B., Liu, Y.H., and Chen, P., Scr. Mater., 2014, vol. 89, pp. 17–20.

    CAS  Article  Google Scholar 

  10. 10

    Guo, J.X., Zhou, X.Y., Lu, Y.B., Zhang, X., Kuang, S.P., and Hou, W.G., J. Solid State Chem., 2012, vol. 196, pp. 550–556.

    CAS  Article  Google Scholar 

  11. 11

    Wang, H., Ning, P., Zhang, Y., Ma, Y., Wang, J., Wang, L., and Zhang, Q., J. Hazard. Mater., 2020, vol. 388, article no. 121812.

    CAS  Article  Google Scholar 

  12. 12

    Aslam, I., Cao, C., Tanveer, M., Farooq, M.H., Tahir, M., Khalid, S., Khan, W.S., Idrees, F., Rizwan, M., and Butt, F.K., CrystEngComm, 2015, vol. 17, pp. 4809–4817.

    CAS  Article  Google Scholar 

  13. 13

    Sriraman, A.K. and Tyagi, A.K., Thermochim. Acta, 2003, vol. 406, pp. 29–33.

    CAS  Article  Google Scholar 

  14. 14

    Rudnev, V.S., Prot. Met., 2008, vol. 44, no. 3, pp. 263–272.

    CAS  Article  Google Scholar 

  15. 15

    Walsh, F.C., Low, C.T.J., Wood, R.J.K., Stevens, K.T., Archer, J., Poeton, A.R., and Ryder, A., Trans. Inst. Met. Finish., 2009, vol. 87, no. 3, pp. 122–135.

    CAS  Article  Google Scholar 

  16. 16

    Jin, F.Y., Tong, H.H., Li, J., Shen, L.R., and Chu, P.K., Surf. Coat. Technol., 2006, vol. 201, nos. 1–2, pp. 292–295.

    CAS  Article  Google Scholar 

  17. 17

    Tang, H. and Wang, F., Mater. Sci. Technol., 2012, vol. 28, no. 12, pp. 1523–1526.

    CAS  Article  Google Scholar 

  18. 18

    Jagminas, A., Ragalevicius, R., Mazeika, K., Reklaitis, J., Jasulaitiene, V., Selskis, A., and Baltrunas, D., J. Solid State Electrochem., 2010, vol. 14, no. 2, pp. 271–277.

    CAS  Article  Google Scholar 

  19. 19

    Rudnev, V.S., Ustinov, A.Yu., Lukiyanchuk, I.V., Kharitonskii, P.V., Frolov, A.M., Tkachenko, I.A., and Morozova, V.P., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no 5, pp. 566–572.

    CAS  Article  Google Scholar 

  20. 20

    Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Ustinov, A.Yu., Tkachenko, I.A., Kharitonskii, P.V., Frolov, A.M., and Morozova, V.P., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 543–552.

    CAS  Article  Google Scholar 

  21. 21

    Rogov, A.B., Terleeva, O.P., Mironov, I.V., and Slonova, A.I., Appl. Surf. Sci., 2012, vol. 258, no. 7, pp. 2761–2765.

    CAS  Article  Google Scholar 

  22. 22

    Rogov, A.B., Slonova, A.I., and Mironov, I.V., Appl. Surf. Sci. 2013, vol. 287, pp. 22–29.

    CAS  Article  Google Scholar 

  23. 23

    Rogov, A.B., Terleeva, O.P., Mironov, I.V., and Slonova, A.I., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 3, pp. 340–345.

    CAS  Article  Google Scholar 

  24. 24

    Gruss, L.L. and McNeil, W., Electrochem. Technol., 1963, vol. 1, nos. 9–10, pp. 283–287.

    CAS  Google Scholar 

  25. 25

    Lukiyanchuk, I.V., Rudnev, V.S., Kuryavyi, V.G., Boguta, D.L., Bulanova, S.B., and Gordienko, P.S., Thin Solid Films, 2004, vol. 446, no. 1, pp. 54–60.

    CAS  Article  Google Scholar 

  26. 26

    Bayati, M.R., Golestani-Fard, F., and Moshfegh, A.Z., Appl. Catal., A, 2010, vol. 382, no. 2, pp. 322–331.

  27. 27

    Chen, L., Qu, Y., Yang, X., Liao, B., Xue, W.B., and Cheng, W., Mater. Chem. Phys., 2017, vol. 201, pp. 311–322.

    CAS  Article  Google Scholar 

  28. 28

    Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Complexones and complexonates of Metals), Moscow: Khimiya, 1988.

  29. 29

    Amsheeva, A.A., J. Anal. Chem. USSR, 1978, vol. 33, no. 6, pp. 814–820. WoS A1978GF08000003

  30. 30

    Vasil'eva, M.S., Rudnev, V.S., Ustinov, A.Yu., Nedozorov, P.M., and Kondrikov, N.B., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 434–439.

    CAS  Article  Google Scholar 

  31. 31

    Mohosoev, M.V. and Shvetsova, N.A., Sostoyanie ionov molibdena i volframa v vodnyh rastvorah (The State of Ions of Molybdenum and Tungsten in Aqueous Solutions), Ulan-Ude: Buryatskoe Knizhnoe Izd., 1977.

  32. 32

    Barim, G., Cottingham, P., Zhou, S., Melot, B.C., and Brutchey, R.L., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 12, pp. 10813–10819.

    CAS  Article  Google Scholar 

  33. 33

    Kment, S., Sivula, K., Naldoni, A., Sarmah, S.P., Kmentova, H., Kulkarni, M., Rambabu, Y., Schmuki, P., and Zboril, R., Prog. Mater. Sci., 2020, vol. 110, article no. 100632.

    CAS  Article  Google Scholar 

  34. 34

    Frova, A., Body, P.J., and Chen, Y.S., Phys. Rev., 1967, vol. 157, pp. 700–708.

    CAS  Article  Google Scholar 

  35. 35

    Bayati, M.R., Moshfegh, A.Z., Golestani-Fard, F., and Molaei, R., Mater. Chem. Phys., 2010, vol. 124, no. 1, pp. 203–207.

    CAS  Article  Google Scholar 

  36. 36

    Walling, C. and Goosen, A., J. Am. Chem. Soc., 1973, vol. 95, no. 9, pp. 2987–2991.

    CAS  Article  Google Scholar 

  37. 37

    Nadtochenko, V. and Kiwi, J., Inorg. Chem., 1998, vol. 37, pp. 5233–5238.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research, grant no. 18-03-00418.

Author information



Corresponding author

Correspondence to M. S. Vasilyeva.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, M.S., Lukiyanchuk, I.V., Sergeev, A.A. et al. Plasma Electrolytic Synthesis and Characteristics of WO3–FeO–Fe2O3 and WO3–FeO–Fe2(WO4)3 Heterostructures. Prot Met Phys Chem Surf 57, 543–549 (2021).

Download citation


  • plasma electrolytic oxidation
  • titanium
  • WO3
  • Fe2O3
  • FeO
  • Fe2(WO4)3
  • photocatalysis