Skip to main content

Plasma Electrolytic Synthesis and Characteristics of WO3–FeO–Fe2O3 and WO3–FeO–Fe2(WO4)3 Heterostructures

Abstract

Fe- and W-containing oxide heterostructures were formed on a titanium surface by plasma electrolytic oxidation in an alkaline tungstate–borate electrolyte containing complex Fe(III)-EDTA ions at anodic current densities of 0.1 and 0.2 A/cm2. According to the data of X-ray diffraction analysis, the composition of all the formed samples is dominated by tungsten oxide WO3 in a cubic modification. In addition, oxide layers obtained at a current density of 0.1 A/cm2 contain Na0.28WO3, Fe2O3, and TiO2 in modifications of rutile and anatase, while the coatings obtained at a current density of 0.2 A/cm2 contain crystalline phases of wustite FeO and Fe2 (WO4)3. The band gap determined by the Tauc method for a direct allowed transition is 2.64 eV for all samples. All formed coatings exhibit photocatalytic activity in the decomposition reaction of methyl orange (20 mg/L, pH 3.3) in the presence of hydrogen peroxide under UV irradiation. The coatings obtained at a current density of 0.1 A/cm2 are active in degradation of methyl orange solution at pH 5.9 (close to the pH of wastewater).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Chen, Z.G., Ma, H.J., Xia, J.X., Zeng, J., Di, J., Yin, S., Xu, L., and Li, H.M., Ceram. Int., 2016, vol. 43, no. 7, pp. 8997–9003. https://doi.org/10.1016/j.ceramint.2016.02.117

    CAS  Article  Google Scholar 

  2. 2

    Cao, X., Chen, Y., Jiao, S.H., Fang, Z.X., Xu, M., Liu, X., Li, L., Pang, G.S., and Feng, S.H., Nanoscale, 2014, vol. 6, no. 21, pp. 12366–12370. https://doi.org/10.1039/c4nr03729d

    CAS  Article  Google Scholar 

  3. 3

    Sun, B., Liu, Y.H., and Chen, P., Scr. Mater., 2014, vol. 89, pp. 17–20. https://doi.org/10.1016/j.scriptamat.2014.06.030

    CAS  Article  Google Scholar 

  4. 4

    Hu, W.B., Zhao, Y.M., Liu, Z.L., Dunnill, C.W., Gregory, D.H., and Zhu, Y.Q., Chem. Mater., 2008, vol. 20, no. 17, pp. 5657–5665. https://doi.org/10.1021/cm801369h

    CAS  Article  Google Scholar 

  5. 5

    He, G.L., Chen, M.J., Liu, Y.Q., Li, X., Liu, Y.J., and Xu, Y.H., Appl. Surf. Sci., 2015, vol. 351, pp. 474–479. https://doi.org/10.1016/j.apsusc.2015.05.159

    CAS  Article  Google Scholar 

  6. 6

    Gao, Q.X. and Liu, Z.J., Prog. Nat. Sci.: Mater. Int., 2017, vol. 27, no. 5, pp. 556–560. https://doi.org/10.1016/j.pnsc.2017.08.016

    CAS  Article  Google Scholar 

  7. 7

    Zhang, J., Zhang, Y., Yan, J.Y., Li, S.K., Wang, H.S., Huang, F.Z., Shen, Y.H., and Xie, A.J., J. Nanopart. Res., 2012, vol. 14, no. 4, article no. 796. https://doi.org/10.1007/s11051-012-0796-6

    CAS  Article  Google Scholar 

  8. 8

    Zhou, Y.X., Yao, H.B., Zhang, Q., Gong, J.Y., Liu, S.J., and Yu, S.H., Inorg. Chem., 2009, vol. 48, no. 3, pp. 1082–1090. https://doi.org/10.1021/ic801806r

    CAS  Article  Google Scholar 

  9. 9

    Sun, B., Liu, Y.H., and Chen, P., Scr. Mater., 2014, vol. 89, pp. 17–20. https://doi.org/10.1016/j.scriptamat.2014.06.030

    CAS  Article  Google Scholar 

  10. 10

    Guo, J.X., Zhou, X.Y., Lu, Y.B., Zhang, X., Kuang, S.P., and Hou, W.G., J. Solid State Chem., 2012, vol. 196, pp. 550–556. https://doi.org/10.1016/j.jssc.2012.07.026

    CAS  Article  Google Scholar 

  11. 11

    Wang, H., Ning, P., Zhang, Y., Ma, Y., Wang, J., Wang, L., and Zhang, Q., J. Hazard. Mater., 2020, vol. 388, article no. 121812. https://doi.org/10.1016/j.jhazmat.2019.121812

    CAS  Article  Google Scholar 

  12. 12

    Aslam, I., Cao, C., Tanveer, M., Farooq, M.H., Tahir, M., Khalid, S., Khan, W.S., Idrees, F., Rizwan, M., and Butt, F.K., CrystEngComm, 2015, vol. 17, pp. 4809–4817. https://doi.org/10.1039/C5CE00712G

    CAS  Article  Google Scholar 

  13. 13

    Sriraman, A.K. and Tyagi, A.K., Thermochim. Acta, 2003, vol. 406, pp. 29–33. https://doi.org/10.1016/S0040-6031(03)00201-6

    CAS  Article  Google Scholar 

  14. 14

    Rudnev, V.S., Prot. Met., 2008, vol. 44, no. 3, pp. 263–272. https://doi.org/10.1134/S0033173208030089

    CAS  Article  Google Scholar 

  15. 15

    Walsh, F.C., Low, C.T.J., Wood, R.J.K., Stevens, K.T., Archer, J., Poeton, A.R., and Ryder, A., Trans. Inst. Met. Finish., 2009, vol. 87, no. 3, pp. 122–135. https://doi.org/10.1179/174591908X372482

    CAS  Article  Google Scholar 

  16. 16

    Jin, F.Y., Tong, H.H., Li, J., Shen, L.R., and Chu, P.K., Surf. Coat. Technol., 2006, vol. 201, nos. 1–2, pp. 292–295. https://doi.org/10.1016/j.surfcoat.2005.11.116

    CAS  Article  Google Scholar 

  17. 17

    Tang, H. and Wang, F., Mater. Sci. Technol., 2012, vol. 28, no. 12, pp. 1523–1526. https://doi.org/10.1179/1743284710Y.0000000050

    CAS  Article  Google Scholar 

  18. 18

    Jagminas, A., Ragalevicius, R., Mazeika, K., Reklaitis, J., Jasulaitiene, V., Selskis, A., and Baltrunas, D., J. Solid State Electrochem., 2010, vol. 14, no. 2, pp. 271–277. https://doi.org/10.1007/s10008-009-0820-7

    CAS  Article  Google Scholar 

  19. 19

    Rudnev, V.S., Ustinov, A.Yu., Lukiyanchuk, I.V., Kharitonskii, P.V., Frolov, A.M., Tkachenko, I.A., and Morozova, V.P., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no 5, pp. 566–572. https://doi.org/10.1134/S2070205110050114

    CAS  Article  Google Scholar 

  20. 20

    Rudnev, V.S., Adigamova, M.V., Lukiyanchuk, I.V., Ustinov, A.Yu., Tkachenko, I.A., Kharitonskii, P.V., Frolov, A.M., and Morozova, V.P., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 543–552. https://doi.org/10.1134/S2070205112050097

    CAS  Article  Google Scholar 

  21. 21

    Rogov, A.B., Terleeva, O.P., Mironov, I.V., and Slonova, A.I., Appl. Surf. Sci., 2012, vol. 258, no. 7, pp. 2761–2765. https://doi.org/10.1016/j.apsusc.2011.10.128

    CAS  Article  Google Scholar 

  22. 22

    Rogov, A.B., Slonova, A.I., and Mironov, I.V., Appl. Surf. Sci. 2013, vol. 287, pp. 22–29. https://doi.org/10.1016/j.apsusc.2013.09.047

    CAS  Article  Google Scholar 

  23. 23

    Rogov, A.B., Terleeva, O.P., Mironov, I.V., and Slonova, A.I., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 3, pp. 340–345. https://doi.org/10.1134/S2070205112030148

    CAS  Article  Google Scholar 

  24. 24

    Gruss, L.L. and McNeil, W., Electrochem. Technol., 1963, vol. 1, nos. 9–10, pp. 283–287.

    CAS  Google Scholar 

  25. 25

    Lukiyanchuk, I.V., Rudnev, V.S., Kuryavyi, V.G., Boguta, D.L., Bulanova, S.B., and Gordienko, P.S., Thin Solid Films, 2004, vol. 446, no. 1, pp. 54–60. https://doi.org/10.1016/S0040-6090(03)01318-X

    CAS  Article  Google Scholar 

  26. 26

    Bayati, M.R., Golestani-Fard, F., and Moshfegh, A.Z., Appl. Catal., A, 2010, vol. 382, no. 2, pp. 322–331. https://doi.org/10.1016/j.apcata.2010.05.017

  27. 27

    Chen, L., Qu, Y., Yang, X., Liao, B., Xue, W.B., and Cheng, W., Mater. Chem. Phys., 2017, vol. 201, pp. 311–322. https://doi.org/10.1016/j.matchemphys.2017.08.013

    CAS  Article  Google Scholar 

  28. 28

    Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Complexones and complexonates of Metals), Moscow: Khimiya, 1988.

  29. 29

    Amsheeva, A.A., J. Anal. Chem. USSR, 1978, vol. 33, no. 6, pp. 814–820. WoS A1978GF08000003

  30. 30

    Vasil'eva, M.S., Rudnev, V.S., Ustinov, A.Yu., Nedozorov, P.M., and Kondrikov, N.B., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 434–439. https://doi.org/10.1134/S1070427210030122

    CAS  Article  Google Scholar 

  31. 31

    Mohosoev, M.V. and Shvetsova, N.A., Sostoyanie ionov molibdena i volframa v vodnyh rastvorah (The State of Ions of Molybdenum and Tungsten in Aqueous Solutions), Ulan-Ude: Buryatskoe Knizhnoe Izd., 1977.

  32. 32

    Barim, G., Cottingham, P., Zhou, S., Melot, B.C., and Brutchey, R.L., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 12, pp. 10813–10819. https://doi.org/10.1021/acsami.6b16216

    CAS  Article  Google Scholar 

  33. 33

    Kment, S., Sivula, K., Naldoni, A., Sarmah, S.P., Kmentova, H., Kulkarni, M., Rambabu, Y., Schmuki, P., and Zboril, R., Prog. Mater. Sci., 2020, vol. 110, article no. 100632. https://doi.org/10.1016/j.pmatsci.2019.100632

    CAS  Article  Google Scholar 

  34. 34

    Frova, A., Body, P.J., and Chen, Y.S., Phys. Rev., 1967, vol. 157, pp. 700–708. https://doi.org/10.1103/PhysRev.157.700

    CAS  Article  Google Scholar 

  35. 35

    Bayati, M.R., Moshfegh, A.Z., Golestani-Fard, F., and Molaei, R., Mater. Chem. Phys., 2010, vol. 124, no. 1, pp. 203–207. https://doi.org/10.1016/j.matchemphys.2010.06.020

    CAS  Article  Google Scholar 

  36. 36

    Walling, C. and Goosen, A., J. Am. Chem. Soc., 1973, vol. 95, no. 9, pp. 2987–2991. https://doi.org/10.1021/ja00790a042

    CAS  Article  Google Scholar 

  37. 37

    Nadtochenko, V. and Kiwi, J., Inorg. Chem., 1998, vol. 37, pp. 5233–5238. https://doi.org/10.1021/ic9804723

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-03-00418.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. S. Vasilyeva.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, M.S., Lukiyanchuk, I.V., Sergeev, A.A. et al. Plasma Electrolytic Synthesis and Characteristics of WO3–FeO–Fe2O3 and WO3–FeO–Fe2(WO4)3 Heterostructures. Prot Met Phys Chem Surf 57, 543–549 (2021). https://doi.org/10.1134/S2070205121030242

Download citation

Keywords:

  • plasma electrolytic oxidation
  • titanium
  • WO3
  • Fe2O3
  • FeO
  • Fe2(WO4)3
  • photocatalysis