Skip to main content

Physicochemical and Biocidal Properties of Nickel–Tin and Nickel–Tin—Titania Coatings

Abstract—

The morphology and composition of Ni–Sn and Ni–Sn–TiO2 coatings have been studied by scanning electron microscopy and energy-dispersive X-ray analysis. The electrochemical behavior of the obtained coatings in a 3% NaCl solution has been examined. The influence of the inclusion of titania in the Ni–Sn coating on the mechanical and antibacterial properties has been revealed. Dependences of the influence of incubation time and exposure to UV radiation on the concentration of living bacteria cells on the surface of the Ni–Sn–TiO2 coating have been established. In bacterial tests with Ni–Sn–TiO2 coatings deposited from the electrolyte containing 2 g/L TiO2, the concentration of viable Staphylococcus aureus decreases from 130 to 90 CFU/mL and from 70 to 30 CFU/mL without and with UV irradiation, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Kaigorodova, T.V., Zimina, E.I., and Ivanov, A.V., Zdravookhr. Ross. Fed., 2009, no. 1, p. 23.

  2. World Health Organization, World Health Statistics 2018: Monitoring Health for the SDGs, Sustainable Development Goals, Geneva, 2018, p. 64.

  3. Beamer, P.I., Plotkin, K.R., Gerba, C.P., et al., J. Occup. Environ. Hyg., 2015, vol. 12, no. 4, p. 266.

    CAS  Article  Google Scholar 

  4. Julian, T.R.A.O., Canales, R.A.O., Leckie, J.O., et al., Risk Anal., 2009, vol. 29, p. 617.

    Article  Google Scholar 

  5. Nicas, M. and Best, D., J. Occup. Environ. Hyg., 2008, vol. 5, p. 347.

    Article  Google Scholar 

  6. Lopez, G.U.P.H., Gerba, C.P.H., Tamimi, A.H., et al., J. Appl. Environ. Microbiol., 2013, vol. 79, p. 307.

    Article  CAS  Google Scholar 

  7. Bartlett, J.G., Management of Respiratory Tract Infections, Baltimore, MD: Lippincott Williams and Wilkins, 1997.

    Google Scholar 

  8. Zaitsev, A.A., Klochkov, O.I., Mironov, M.B., et al., Ostrye respiratornye virusnye infektsii: etiologiya, diagnostika, lechenie i profilaktika. Posobie dlya vrachei (Acute Respiratory Viral Infections: Etiology, Diagnostics, Treatment, and Prevention. Manual for Doctors), Moscow, 2008, p. 37.

  9. Bilichenko, T.N. and Chuchalin, A.G., Ter. Arkh., 2018, vol. 90, no. 1, p. 22.

    CAS  Google Scholar 

  10. Woods, J.B., Biological Weapons Defense, Totowa, NJ: Humana Press, 2005, p. 285.

    Google Scholar 

  11. Fluit, A.C., Visser, M.R., and Schmitz, F., Clin. Microbiol. Rev., 2001, vol. 14, no. 4, p. 836.

    CAS  Article  Google Scholar 

  12. Yim, G., Wang, H.H., and Davies, J., Philos. Trans. R. Soc., B, 2007, vol. 362, p. 1195.

  13. Beloborodov, V.B., Con. Med., 2004, vol. 6, no. 1, p. 18. Beloborodov, V.B., Consilium Med., 2004, vol. 6, no. 1, p. 18.

    Google Scholar 

  14. Karkishchenko, N.N., Biomeditsina, 2009, no. 1, p. 5.

  15. Babushkina, I.V., Borodulin, V.B., Korshunov, G.V., et al., Sarat. Nauchno-Med. Zh., 2010, vol. 6, no. 1, p. 11.

  16. Zotova, E.S., Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Evening Institute of Iron and Steel, 2008.

  17. Yin, M., Wu, C.K., Lou, Y., et al., J. Am. Chem. Soc., 2005, vol. 127, no. 26, p. 9506.

    CAS  Article  Google Scholar 

  18. Reisse, J., Francois, H., Vandercammen, J., et al., Electrochim. Acta, 1994, no. 39, p. 37.

  19. Eroklintsev, V.N. and Luk’yanova, V.O., Tendentsii Razvit. Nauki Obraz., 2017, no. 28-2, p. 17.

  20. Babushkina, I.V., Borodulin, V.B., and Korshunov, G.V., Klin. Lab. Diagn., 2008, no. 9, p. 85.

  21. Babushkina, I.V., Borodulin, V.B., Korshunov, G.V., et al., Sarat. Nauchno-Med. Zh., 2010, vol. 6, no. 1, p. 11.

  22. Makarova, I.V., Kharitonov, D.S., Dobryden’, I.B., et al., Russ. J. Appl. Chem., 2018, vol. 91, p. 1441.

    CAS  Article  Google Scholar 

  23. Makarova, I., Dobryden’, I., Kharitonov, D., et al., Surf. Coat. Technol., 2019, vol. 380, p. 125063.

    CAS  Article  Google Scholar 

  24. Pyanko, A.V., Makarova, I.V., Kharitonov, D.S., et al., Inorg. Mater., 2019, vol. 55, no. 6, p. 568.

    CAS  Article  Google Scholar 

  25. Kuznetsov, B.V., Vorobyova, T.N., and Glibin, V.P., Met. Finish., 2013, vol. 111, no. 3, p. 38.

    CAS  Article  Google Scholar 

  26. Shekhanov, R.F., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2017, vol. 60, no. 10, p. 75.

    CAS  Article  Google Scholar 

  27. Wagner, V., Übersichtsstudie Wasserknappheit & Technologie, Dusseldorf, 2004, p. 194.

    Google Scholar 

  28. Park, N.-G., Van de Lagemaat, J., and Frank, A.J., J. Phys. Chem., 2000, vol. 104, no. 38, p. 8989.

    CAS  Article  Google Scholar 

  29. Smestad, G., Bignozzi, C., and Smestad, R.A., Sol. Energy Mater. Sol. Cells, 1994, vol. 32, no. 3, p. 259.

    CAS  Article  Google Scholar 

  30. Mills, A. and Le Hunte, S., J. Photochem. Photobiol., A, 1997, vol. 108, p. 1.

    CAS  Article  Google Scholar 

  31. Kikuchi, Y., Sunada, K., Iyoda, T., et al., J. Photochem. Photobiol., A, 1997, vol. 106, p. 51.

    CAS  Article  Google Scholar 

  32. Hoffmann, M.R., Martin, S.T., Choi, W., et al., Chem. Rev., 1995, vol. 95, p. 69.

    CAS  Article  Google Scholar 

  33. Matsunaga, T., Tomoda, R., Nakajima, T., et al., Appl. Environ. Microbiol., 1988, vol. 54, p. 1330.

    CAS  Article  Google Scholar 

  34. Woods, J.B., Biological Weapons Defense, Totowa, NJ: Humana Press, 2005, p. 285.

    Google Scholar 

  35. Fluit, A.C., Visser, M.R., and Schmitz, F., Clin. Microbiol. Rev., 2001, vol. 14, no. 4, p. 836.

    CAS  Article  Google Scholar 

  36. Ollis, D.F. and Al-Ekabi, H., Open J. Inorg. Chem., 1993, p. 511.

  37. Xu, M., Huang, N., Xiao, Z., et al., Supramol. Sci., 1998, no. 5, p. 449.

  38. Freitas, R.A., Jr., Int. J. Surg., 2005, no. 3, p. 243.

  39. Murashkevich, A.N., Alisienok, O.A., Zharskiy, I.M., et al., J. Sol-Gel Sci. Technol., 2019, vol. 92, p. 254.

    CAS  Article  Google Scholar 

  40. Kutuzau, M., Shumskaya, A., and Kaniukov, E., Nucl. Instrum. Methods Phys. Res., Sect. B, 2019, vol. 460, p. 212.

    CAS  Google Scholar 

  41. Murashkevich, A.N., Chechura, K.M., Novitskaya, M.S., et al., Inorg. Mater., 2018, vol. 54, p. 1223.

    CAS  Article  Google Scholar 

  42. Kuz'micheva, G.M., Savinkina, E.V., Obolenskaya, L.N., et al., Crystallogr. Rep., 2010, vol. 55, no. 5, p. 866.

    CAS  Article  Google Scholar 

  43. Ismagilov, Z.R., Tsikoza, L.T., Shikina, N.V., et al., Russ. Chem. Rev., 2009, vol. 78, p. 873.

    CAS  Article  Google Scholar 

  44. Gerasimenko, Yu.V., Logacheva, V.A., and Khoviv, A.M., Kondens. Sredy Mezhfaznye Granitsy, 2010, vol. 12, no. 2, p. 113.

    CAS  Google Scholar 

  45. Kim, B., Kim, D., Cho, D., et al., Chemosphere, 2003, vol. 52, p. 277.

    CAS  Article  Google Scholar 

  46. Modesa, T., Scheffela, B., Metznera, Chr., et al., Surf. Coat. Technol., 2005, vol. 200, p. 306.

    Article  CAS  Google Scholar 

  47. Kleiman, A., Mrquez, A., and Lamas, D.G., Surf. Coat. Technol., 2007, vol. 201, p. 86.

    Article  CAS  Google Scholar 

  48. Nishimoto, S., Ohtani, B., Kaijiwara, H., et al., J. Chem. Soc., Faraday Trans. 1, 1985, vol. 81, p. 61.

    CAS  Article  Google Scholar 

  49. Kovalenko, I.V., Chernenko, L.V., Khainakov, S.A., et al., Ukr. Khim. Zh., 2008, vol. 74, nos. 3–4, p. 52.

    CAS  Google Scholar 

  50. Kovalenko, I.V., Cand. Sci. (Chem.) Dissertation, Kyiv, 2009.

  51. Kuznetsov, B.V., Vorobyova, T.N., and Glibin, V.P., Met. Finish., 2013, vol. 111, no. 3, p. 38.

    CAS  Article  Google Scholar 

  52. Antikhovich, I.V., Kharitonov, D.S., Chernik, A.A., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 4, p. 566.

    CAS  Article  Google Scholar 

  53. Winiarski, J., Niciejewska, A., Ryl, J., et al., Materials, 2020, vol. 13, p. 924.

    CAS  Article  Google Scholar 

  54. Wysocka, I., Kowalska, E., Ryl, J., et al., Nanomaterials, 2019, vol. 9, p. 1129.

    CAS  Article  Google Scholar 

  55. Miszczyk, A. and Darowicki, K., Anti-Corros. Methods Mater., 2011, vol. 58, no. 1, pp. 13–21.

    CAS  Article  Google Scholar 

  56. Rudoy, V.M., Ostanin, N.I., Ostanina, T.N., et al., Russ. J. Non-Ferrous Met., 2019, vol. 60, pp. 632–638.

    Article  Google Scholar 

  57. Nikitin, V.S., Rudoi, V.M., Ostanina, T.N., et al., J. Anal. Chem., 2017, vol. 72, pp. 390–395.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pyanko.

Ethics declarations

This work was financially supported by the Ministry of Education of the Republic of Belarus, project Electrochemical Composite Coatings with Photocatalytic Properties Based on Tin Alloys.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pyanko, A.V., Makarova, I.V., Kharitonov, D.S. et al. Physicochemical and Biocidal Properties of Nickel–Tin and Nickel–Tin—Titania Coatings. Prot Met Phys Chem Surf 57, 88–95 (2021). https://doi.org/10.1134/S2070205121010160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121010160

Keywords:

  • alloy
  • nickel–tin
  • titania
  • corrosion
  • biocidal properties