Skip to main content
Log in

Diffusion Mechanism of Nitrobenzene in Hydrophilic, Hydrophobic, and Their Composite Ionic Liquids

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

As the nonaqueous electrolytes featured with stable conductivity, ionic liquids (ILs) have attracted intense interest in electrochemical applications, including the electroreduction of toxic materials. To fundamentally understand the diffusion mechanism in electroreduction of toxic nitrobenzene (PhNO2) in ILs plays the vital importance in designing effective experimental processes. However, such diffusion is highly reliant on the properties, i.e. hydrophilicity or hydrophobicity, of ILs, which has been rarely studied theoretically. Here, we performed a systematic study on the diffusion mechanism of electroreduction of PhNO2 in the ILs with their properties varied. We designed the diffusion models of nitrobenzene in pure hydrophilic (PHIL), pure hydrophobic (PHOB) and equal volume ratio composite (EVRC) ILs, and then applied molecular dynamics (MD) simulation to explore the diffusion mechanism. The results show that the structural difference of anions is the key to the diffusion variation before and after the mixture of PHIL and PHOB ILs. The interaction essence between nitrobenzene and ionic liquid was explored from the analysis of radial distribution function (RDF), and the existence of Coulomb interaction was verified by density functional theory (DFT). These calculated results can provide a theoretical reference for diffusion process of PhNO2 electroreduction in the ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Liu, W.M., Shi, M.Q., Lang, X.L., Zhao, D., Chu, Y.Q., and Ma, C.A., Catal. Today, 2013, vol. 200, p. 87.

    Article  CAS  Google Scholar 

  2. Doherty, S., Knight, J.G., Backhouse, T., Bradford, A., Saunders, F., Bourne, R.A., Chamberlain, T.W., Stones, R., Clayton, A., and Lovelock, K., Catal.: Sci. Technol., 2018, vol. 8, p. 1454.

    CAS  Google Scholar 

  3. Lee, J., Hay, C.E., and Silvester, D.S., Aust. J. Chem., 2018, vol. 71, p. 818.

    Article  CAS  Google Scholar 

  4. Chen, S., Ma, C.A., Chu, Y.Q., Mao, X.B., Bai, Y.S., and Chen, L., Acta Phys. - Chim. Sin., 2009, vol. 25, p. 2005.

    Article  CAS  Google Scholar 

  5. Thawarkar, S.R., Thombare, B., Munde, B.S., and Khupse, N.D., RSC Adv., 2018, vol. 8, p. 38384.

    Article  CAS  Google Scholar 

  6. Goodwin, S.E., Muhammad, S., Tuan, L.P., and Walsh, D.A., J. Electroanal. Chem., 2018, vol. 819, p. 187.

    Article  CAS  Google Scholar 

  7. Fujie, K., Ikeda, R., Otsubo, K., and Yamada, T., Chem. Mater., 2015, vol. 27, p. 7355.

    Article  CAS  Google Scholar 

  8. Isse, A.A., Arnaboldi, S., Durante, C., and Gennaro, A., J. Electroanal. Chem., 2018, vol. 819, p. 562.

    Article  CAS  Google Scholar 

  9. Uematsu, T., Han, J.T., Tsuda, T., and Kuwabata, S., J. Phys. Chem. C, 2012, vol. 116, p. 20902.

    Article  CAS  Google Scholar 

  10. Yago, T. and Wakasa, M., J. Phys. Chem. C, 2011, vol. 115, p. 2673.

    Article  CAS  Google Scholar 

  11. Osti, N.C., Van Aken, K.L., Thompson, M.W., Tiet, F., and Jiang, D.E., J. Phys. Chem. Lett., 2017, vol. 8, p. 167.

    Article  CAS  Google Scholar 

  12. Zeng, J.P., Bai, Y.S., Chen, S., and Ma, C.A., J. Mol. Liq., 2013, vol. 183, p. 1.

    Article  CAS  Google Scholar 

  13. Zeng, J.P., Zhang, Y.X., Dai, Y., and Chen, S., J. Mol. Liq., 2014, vol. 198, p. 274.

    Article  CAS  Google Scholar 

  14. Zeng, J.P., Zhang, J.Y., and Gong, X.D., Comput. Theor. Chem., 2011, vol. 963, p. 110.

    Article  CAS  Google Scholar 

  15. Zeng, J.P., Wang, A.M., Gong, X.D., Chen, J.W., Chen, S., and Xue, F., Chin. J. Chem., 2012, vol. 30, p.115.

    Article  CAS  Google Scholar 

  16. Zeng, J., Zhang, Y., Sun, R., and Chen, S., Electrochim. Acta, 2014, vol. 134, p. 193.

    Article  CAS  Google Scholar 

  17. Materials Studio 4.4, Discover, San Diego, CA: Accelrys Software Inc., 2009.

  18. Canongia Lopes, J.N. and Pádua, A.A.H., J. Phys. Chem. B, 2006, vol. 110, p. 19586.

    Article  CAS  Google Scholar 

  19. de Andrade, J., Böes, E.S., and Stassen, H., J. Phys. Chem. B, 2002, vol. 106, p. 3546.

    Article  CAS  Google Scholar 

  20. de Andrade, J., Böes, E.S., and Stassen, H., J. Phys. Chem. B, 2002, vol. 106, p. 13344.

    Article  CAS  Google Scholar 

  21. Dahal, U. and Adhikaria, N.P., J. Mol. Liq., 2012, vol. 167, p. 34.

    Article  CAS  Google Scholar 

  22. Hautman, J. and Klein, M.L., Mol. Phys., 1992, vol. 75, p. 379.

    Article  CAS  Google Scholar 

  23. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G., J. Chem. Phys., 1995, vol. 103, p. 8577.

    Article  CAS  Google Scholar 

  24. Nymand, T.M. and Linse, P., J. Chem. Phys., 2000, vol. 112, p. 6152.

    Article  CAS  Google Scholar 

  25. Heermann, D.W., Computer Simulation Methods in the Theoretical Physics, Beijing: Peking Univ. Press, 1996.

    Google Scholar 

  26. Fraternali, F., Biopolymers, 1990, vol. 30, p.1083.

    Article  CAS  Google Scholar 

  27. Xu, L., Kumar, P., Buldyrev, S.V., Chen, S.H., Poole, P.H., Sciortino, F., and Stanley, H.E., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, p. 16558.

    Article  CAS  Google Scholar 

  28. Berendsen, H.J.C., Postma, J.P.M., van Gunstere, W.F., Di Nola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, p. 3684.

    Article  CAS  Google Scholar 

  29. Wang, P.L., Wang, Z.W., Hu, C.Y., and Chen, M., J. Chem. Ind. Eng., 2009, vol. 60, p.1920.

    CAS  Google Scholar 

  30. Sun, W., Chen, Z., Huang, S.Y., J. Chem. Ind. Eng., 2005, vol. 56, p. 763.

    CAS  Google Scholar 

  31. Ziu, L.Q., Hu, Y.D., Yang, D.F., and Liu, G.Z., J. Chem. Ind. Eng., 2007, vol. 58, p. 842.

    Google Scholar 

  32. Huang, Y.C., Hu, Y.J., Xiao, J.J., Yin, K.L., and Xiao, H.M., Acta Phys. - Chim. Sin., 2005, vol. 21, p. 425.

    Article  CAS  Google Scholar 

  33. Patah, A., Bächle, J., and Grampp, G., Electrochim. Acta, 2016, vol. 219, p. 305.

    Article  CAS  Google Scholar 

  34. Kowsari, M.H., Alavi, S., Ashrafizaadeh, M., and Najafi, B., J. Chem. Phys., 2008, vol. 129, p. 224508.

    Article  CAS  Google Scholar 

  35. Kirchner, B., Malberg, F., Firaha, D.S., and Hollóczki, O., J. Phys.: Condens. Matter, 2015, vol. 27, p.463002.

    Google Scholar 

  36. Jiang, C.T., Ouyang, J., Wang, L.H., Liu, Q.S., and Wang, X.D., Int. J. Heat Mass Transfer, 2017, vol. 10, p. 80.

    Article  Google Scholar 

  37. Pandey, A., Hardt, S., Klar, A., and Tiwari, S., Comput. Fluids, 2016, vol. 127, p.174.

    Article  Google Scholar 

  38. Raschle, T., Flores, P.R., Opitz, C., Müller, D.J., and Hiller, S., Angew. Chem., Int. Ed., 2016, vol. 55, p. 5952.

    Article  CAS  Google Scholar 

  39. Leach, A.R., Molecular Modeling: Principles and Applications, Harlow, New York: Prentice Hall, 2001.

    Google Scholar 

  40. Rey-Castro, C., Tormo, A.L., and Vega, L.F., Fluid Phase Equilib., 2007, vol. 256, p. 62.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. Jianping Zeng, Mr. Liang Chen, Mr. Yousheng Xu and Prof. Song Chen acknowledge the financial support from University-Industry Cooperation Research Project in Jiangsu (No. YG2020051405) and 2020 College Students Innovation Training Program Project of Yancheng Institute of Technology (Provincial key, No. 7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jianping Zeng, Chen, L., Xu, Y. et al. Diffusion Mechanism of Nitrobenzene in Hydrophilic, Hydrophobic, and Their Composite Ionic Liquids. Prot Met Phys Chem Surf 56, 886–896 (2020). https://doi.org/10.1134/S2070205120050305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120050305

Keywords:

Navigation