Skip to main content
Log in

Synergistic Effect between Fragaria ananassa and Cucurbita pepo L Leaf Extracts on Mild Steel Corrosion in Hydrochloric Acid Solutions

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The thermodynamic, inhibitive and synergistic properties of Fragaria ananassa (strawberry) and Cucurbita pepo L (zucchini) leaf extracts on the corrosion of mild steel in Hydrochloric acid solutions were examined by potentiodynamic polarization curves measurements and electrochemical impedance spectroscopy (EIS) technique as well as optical photographic study. Fourier transform infrared spectroscopy (FTIR) and UV-Spectroscopy were applied to predict the possible functional groups and constituents of both leaf extracts. Potentiodynamic polarization curves proved that Fragaria ananassa and Cucurbita pepo L leaf extracts act as mixed type inhibitors for mild steel in 0.5 M HCl solutions. Impedance plots indicated that the corrosion process occurred under activation control. Thermodynamic parameters proved that the formation of the activated complex is an endothermic association instead of a dissociation step. The inhibitive efficiency of these leaf extracts relies on their physical adsorption on the metal surface rather than the complexation with Fe2+ ions. Cucurbita pepo L leaf extract is more efficient than Fragaria ananassa as a corrosion inhibitor for mild steel in 0.5 M HCl. The synergistic effect between both extracts may be due to co-adsorption between their molecules, which could be either competitive or co-operative adsorptions. The synergistic parameter value S was higher than unity indicating a cooperative synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abdel-Gaber, A.M., Awad, R., Rahal, H.T., and Moussa, D., J. Bio- Tribo-Corros., 2019, vol. 5, p. 49.

  2. El Sayed, M.Y., Abdel-Gaber, A.M., and Rahal, H.T., J. Failure Anal. Prev., 2019, vol. 19, pp. 1174–1180.

    Article  Google Scholar 

  3. Alibakhshi, E., Ramezanzadeh, M., Bahlakeh, G., Ramezanzadeh, B., Mahdavian, M., and Motamedi, M., J. Mol. Liq., 2018, vol. 255, pp. 185–198.

    Article  CAS  Google Scholar 

  4. Zhang, K., Yang, W., Yin, X., Chen, Y., Liu, Y., Le, J., and Xu, B., Carbohydr. Polym., 2018, vol. 181, pp. 191–199.

    Article  CAS  Google Scholar 

  5. Aiad, I., Shaban, S.M., Moustafa, H.Y., and Hamed, A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 135–147.

    Article  CAS  Google Scholar 

  6. Ugryumov, O.V., Ivshin, Y.V., Fakhretdinov, P.S., Romanov, G.V., and Kaidrikov, R.A., Prot. Met. Phys. Chem. Surf., 2001, vol. 37, pp. 337–342.

    CAS  Google Scholar 

  7. Chadli, R., ELherri, A., Elmsellem, H., Elazzouzi, M., Merad, N., Aouniti, A., and Zarrouk, A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 928–936.

    Article  CAS  Google Scholar 

  8. Rahal, H.T., Abdel-Gaber, A.M., and Younes, G.O., Chem. Eng. Commun., 2016, vol. 203, pp. 435–445.

    Article  CAS  Google Scholar 

  9. Lai, C., Xie, B., Zou, L., Zheng, X., Ma, X., and Zhu, S., Results Phys., 2017, vol. 7, pp. 3434–3443.

    Article  Google Scholar 

  10. Tsoeunyane, M.G., Makhatha, M.E., and Arotiba, O.A., Int. J. Corros., 2019, vol. 2019, article ID 7406409. https://doi.org/10.1155/2019/7406409

    Article  CAS  Google Scholar 

  11. El-Haddad, M.A., Radwan, A.B., Sliem, M.H., Hassan, W.M., and Abdullah, A.M., Sci. Rep., 2019, vol. 9, p. 3695. https://doi.org/10.1038/s41598-019-40149-w

    Article  CAS  Google Scholar 

  12. Hameed, R.A. and Abdallah, M., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 113–121.

    Article  Google Scholar 

  13. Srivastava, M., Tiwari, P., Srivastava, S.K., Kumar, A., Ji, G., and Prakash, R., J. Mol. Liq., 2018, vol. 254, pp. 357–368.

    Article  CAS  Google Scholar 

  14. Ehsani, A., Mahjani, M.G., Hosseini, M., Safari, R., Moshrefi, R., and Shiri, H.M., J. Colloid Interface Sci., 2017, vol. 490, pp. 444–451.

    Article  CAS  Google Scholar 

  15. Al-Moghrabi, R.S., Abdel-Gaber, A.M., and Rahal, H.T., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 603–607.

    Article  CAS  Google Scholar 

  16. Al-Moghrabi, R.S., Abdel-Gaber, A.M., and Rahal, H.T., Int. J. Ind. Chem., 2018, vol. 9, pp. 255–263.

    Article  CAS  Google Scholar 

  17. Zheng, X., Gong, M., Li, Q., and Guo, L., Sci. Rep., 2018, vol. 8, p. 9140. https://doi.org/10.1038/s41598-018-27257-9

    Article  CAS  Google Scholar 

  18. Akalezi, C.O., Onyedika, G.O., Chahul, H.F., and Oguzie, E.E., FUTO J. Ser.(FUTOJNLS), 2016, vol. 2, pp. 265–280.

    Google Scholar 

  19. Kalaiselvi, K., Chung, I.M., Kim, S.H., and Prabakaran, M., Anti-Corros. Methods Mater., 2018, vol. 65, pp. 408–416.

    Article  CAS  Google Scholar 

  20. Boumhara, K., Harhar, H., Tabyaoui, M., Bellaouchou, A., Guenbour, A., and Zarrouk, A., J. Bio- Tribo-Corros., 2019, vol. 5, p. 8. https://doi.org/10.1007/s40735-018-0202-8

  21. Tiwari, P., Srivastava, M., Mishra, R., Ji, G., and Prakash, R., J. Environ. Chem. Eng., 2018, vol. 6, pp. 4773–4783.

    Article  CAS  Google Scholar 

  22. Bhuvaneswari, T.K., Vasantha, V.S., and Jeyaprabha, C., Silicon, 2018, vol. 10, pp. 1793–1807.

    Article  CAS  Google Scholar 

  23. Mourya, P., Banerjee, S., and Singh, M.M., Corros. Sci., 2014, vol. 85, pp. 352–363.

    Article  CAS  Google Scholar 

  24. Kumar, S., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 376–380.

    Article  CAS  Google Scholar 

  25. Rajan, J.P., Shrivastava, R., and Mishra, R.K., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 1161–1172.

    Article  CAS  Google Scholar 

  26. Buyuksagis, A. and Dİlek, M., Prot. Met. Phys. Chem. Surf., 2018, vol. 55, pp. 1182–1194.

    Article  Google Scholar 

  27. Haldhar, R., Prasad, D., and Bhardwaj, N., J. Adhes. Sci. Technol., 2019, vol. 33, pp. 1169–1183.

    Article  CAS  Google Scholar 

  28. Ikeuba, A.I. and Okafor, P.C., Pigm. Resin Technol., 2019, vol. 48, pp. 57–64.

    Article  CAS  Google Scholar 

  29. Mohammed, R.A. and AL-Mammar, D.E., Iraqi J. Sci., 2019, vol. 60, pp. 40–45.

    Google Scholar 

  30. Abdel-Gaber, A.M., Rahal, H.T., and Beqai, F.T., Int. J. Ind. Chem., 2020, vol. 11, pp. 123–132. https://doi.org/10.1007/s40090-020-00207-z

    Article  CAS  Google Scholar 

  31. Abdel-Gaber, A.M., Abd-El-Nabey, B.A., Sidahmed, I.M., El-Zayady, A.M., and Saadawy, M., Corros. Sci., 2006, vol. 48, pp. 2765–2779.

    Article  CAS  Google Scholar 

  32. Dehghani, A., Bahlakeh, G., and Ramezanzadeh, B., Bioelectrochemistry, 2019, vol. 130, p. 107339. https://doi.org/10.1016/j.bioelechem.2019.107339

    Article  CAS  Google Scholar 

  33. Nikpour, S., Ramezanzadeh, M., Bahlakeh, G., Ramezanzadeh, B., and Mahdavian, B. M., Constr. Build. Mater., 2019, vol. 22, pp. 161–176.

    Article  CAS  Google Scholar 

  34. Rosli, N.R., Yusuf, S.M., Sauki, A., and Razali, W.M.R.W., Key Eng. Mater., 2019, vol. 797, pp. 230–239.

    Article  Google Scholar 

  35. Ogunleye, O.O., Eletta, O. A., Arinkoola, A.O., Agbede, O.O., Omodele, A.E., Morakinyo, A.F., and Osho, Y.A., IndianChem. Eng., 2019, vol. 2019, pp. 1–15.

    Google Scholar 

  36. Ogunleye, O.O., Eletta, O.A., Arinkoola, A.O., and Agbede, O.O., Asia-Pac. J. Chem. Eng., 2018, vol. 13, p. e2257. https://doi.org/10.1002/apj.2257

    Article  CAS  Google Scholar 

  37. Liao, L.L., Mo, S., Luo, H.Q., and Li, N.B., J. Colloid Interface Sci., 2018, vol. 520, pp. 41–49.

    Article  CAS  Google Scholar 

  38. Liao, L.L., Mo, S., Luo, H.Q., and Li, N.B., J. Colloid Interface Sci., 2017, vol. 499, pp.110–119.

    Article  CAS  Google Scholar 

  39. Aiboudi, M., Yousfi, F., Fekkar, G., Bouyazza, L., Ramadani, M., El Azzouzi, M., and Abdelrahman, I., J. Mater. Environ. Sci., 2019, vol. 10, pp. 339–346.

    CAS  Google Scholar 

  40. Sanni, S.E., Fayomi, S.I., Emetere, M.E., and Tenebe, T.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, pp. 389–399.

    Article  CAS  Google Scholar 

  41. Hedge, M. and Nayak, S.P., J. Mater. Environ. Sci., 2019, vol. 10, pp. 22–31.

    Google Scholar 

  42. Zhao, A., Sun, H., Chen, L., Huang, Y., Lu, X., Mu, B., Gao, H., Wang, S., and Singh, A., Int. J. Electrochem. Sci., 2019, vol. 14, pp. 6814–6825.

    Article  CAS  Google Scholar 

  43. Dehghani, A., Bahlakeh, G., Ramezanzadeh, B., and Ramezanzadeh, M., J. Mol. Liq., 2019, vol. 279, pp. 603–624.

    Article  CAS  Google Scholar 

  44. Umoren, S.A., Obot, I.B., and Gasem, Z.M., Ionics, 2015, vol. 21, p. 1171–1186.

    Article  CAS  Google Scholar 

  45. Abdel-Gaber, A.M., Int. J. Appl. Chem., 2007, vol. 3, pp. 161–174.

    Google Scholar 

  46. El Din, A.S., Mohammed, R.A., and Haggag, H.H., Desalination, 1997, vol. 114, pp. 85–95.

    Article  Google Scholar 

  47. Yaro, A.S., Khadom, A.A., and Idan, M.A., J. Mater. Environ. Sci., 2015, vol. 6, pp. 1101–1104.

    CAS  Google Scholar 

  48. Abdel-Gaber, A.M., Masoud, M.S., Khalil, E.A., and Shehata, E.E., Corros. Sci., 2009, vol. 51, pp. 3021–3024.

    Article  CAS  Google Scholar 

  49. Rahal, H.T., Abdel-Gaber, A.M., Awad, R., and Abdel-Naby, B.A., Anti-Corros. Methods Mater., 2018, vol. 65, pp. 430–435.

    Article  CAS  Google Scholar 

  50. Rahal, H.T., Abdel-Gaber, A.M., and Awad, R., Chem. Eng. Commun., 2017, vol. 204, pp. 348–355.

    Article  CAS  Google Scholar 

  51. Tabesh, R.N., Abdel-Gaber, A.M., Hammud, H.H., and Al-Oweini, R., Z. Phys. Chem., 2019, vol. 233, pp. 1553–1569.

    Article  CAS  Google Scholar 

  52. Lebrini, M., Robert, F., and Roos, C., Int. J. Electrochem. Sci., 2010, vol. 5, pp. 1698–1712.

    CAS  Google Scholar 

  53. Murakawa, T., Nagaura, S., and Hackerman, N., Corros. Sci., 1967, vol. 7, pp. 79–89.

    Article  CAS  Google Scholar 

  54. Tavakoli, H., Shahrabi, T., and Hosseini, M.G., Mater. Chem. Phys., 2008, vol. 109, pp. 281–286.

    Article  CAS  Google Scholar 

  55. Eduok, U.M., Umoren, S.A., and Udoh, A.P., Arabian J. Chem., 2012, vol. 5, pp. 325–337.

    Article  CAS  Google Scholar 

  56. Loto, R.T. and Tobilola, O., J. King Saud Univ.,Eng. Sci., 2018, vol. 30, pp. 384–390.

    Google Scholar 

  57. Li, X., Deng, S., and Fu, H., Corros. Sci., 2009, vol. 51, pp. 1344–1355.

    Article  CAS  Google Scholar 

  58. Chidiebere, M.A., Oguzie, E.E., Liu, L., Li, Y., and Wang, F., Ind. Eng. Chem. Res., 2014, vol. 53, pp. 7670–7767.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Rahal.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khatib, L.W., Rahal, H.T. & Abdel-Gaber, A.M. Synergistic Effect between Fragaria ananassa and Cucurbita pepo L Leaf Extracts on Mild Steel Corrosion in Hydrochloric Acid Solutions. Prot Met Phys Chem Surf 56, 1096–1106 (2020). https://doi.org/10.1134/S2070205120050111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120050111

Keywords:

Navigation