Skip to main content
Log in

Physicochemical Studies of Al–Cu Alloy Powder and Material on Its Basis Produced under Nonoptimal Conditions of 3D Printing

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The surface structure and volume of a 3D article produced by the method of selective laser melting from a powder of the D-16 alloy has been studied. Using the XPS method, it has been determined that there is an Al2O3 layer on its surface and a metal alloy Al–Cu with a copper content of ~5% under it, which coincides with the data of energy dispersive X-ray analysis conducted on the initial powder by the method of scanning electron microscopy. Local areas with an increased copper content (up to 13 at %) were revealed at the boundaries of the crystal grains. A high porosity of the obtained material has been established, which resulted from the specifics of crystallization of the Al–Cu system’s alloys related to the transfer of substance along the interfaces, as a consequence of the presence of concentration, temperature and, surface tension gradients along with nonoptimal 3D printing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Starke, E.A. and Staley, J.T., Prog. Aerosp. Sci., 1996, vol. 32, p. 131.

    Article  Google Scholar 

  2. Miller, W., Mater. Charact., 1995, vol. 35, pp. 41–67.

    Article  Google Scholar 

  3. Martin, J.H., Yahata, B.D., Hundley, J.M., et al., Nature, 2017, vol. 549, pp. 365–369.

    Article  CAS  Google Scholar 

  4. Lyakishev, P.P., Diagrammy sostoyaniya dvoinykh metallicheskikh system. Spravochnik (State Diagrams of Binary Metal Systems), Moscow: Mashinostroenie, 1997.

  5. Men'shikova, S.G., Shirinkina, I.G., Brodova, I.G., Lad’yanov, V.I., and Suslov, A.A., Metalloved.Term. Obrab. Met., 2018, vol. 753, no. 3, pp. 45–52.

    Google Scholar 

  6. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., and Bültmann, J., Proc. 6th Int. WLT Conference on Lasers in Manufacturing, Munich, 2011; Phys. Procedia, 2012, vol. 12, part A, pp. 271–278.

  7. Louvis, E., Fox, P., and Sutcliffe, C.J., J. Mater. Process. Technol., 2011, vol. 211, pp. 275–284.

    Article  CAS  Google Scholar 

  8. Olakanmi, E.O., Cochrane, R.F., and Dalgarno, K.W., J. Mater. Process. Technol., 2011, vol. 211, pp. 113–121.

    Article  CAS  Google Scholar 

  9. Olakanmi, E.O., Dalgarno, K.W., and Cochrane, R.F., Rapid Prototyping J., 2012, vol. 18, pp. 109–119.

    Article  Google Scholar 

  10. Brandl, E., Heckenberger, U., Holzinger, V., and Buchbinder, D., Mater. Des., 2012, vol. 34, pp. 159–169.

    Article  CAS  Google Scholar 

  11. Dadbakhsh, S. and Hao, L., J. Alloys Compd., 2012, vol. 541, pp. 328–334.

    Article  CAS  Google Scholar 

  12. Dadbakhsh, S. and Hao, L., Adv. Eng. Mater., 2012, vol. 14, pp. 45–48.

    Article  CAS  Google Scholar 

  13. Dadbakhsh, S., Hao, L., and Zhang, D.Z., Powder Technol., 2012, vol. 231, pp. 112–121.

    Article  CAS  Google Scholar 

  14. Dadbakhsh, S. and Hao, L., Sci. World J., 2014, vol. 2014, article ID 106129. https://doi.org/10.1155/2014/106129

    Article  CAS  Google Scholar 

  15. Ahuja, B., Karg, M., Nagulin, K.Yu., and Schmidt, M., Proc. 8th Int. Conference on Laser Assisted Net Shape Engineering LANE 2014, Fürth, 2014; Phys. Procedia, 2014, vol. 56, pp. 135–146.

    Article  CAS  Google Scholar 

  16. Li, X.P., Kang, C.W., Huang, H., et al., Mater. Sci. Eng., A, 2014, vol. 606, pp. 370–379.

    Article  CAS  Google Scholar 

  17. Kenzari, S., Bonina, D., Ubois, J.-M., and Fournée, V., J. Mater. Process. Technol., 2014, vol. 214, pp. 3108–3111.

    Article  CAS  Google Scholar 

  18. Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B., et al., Mater. Sci. Eng., A, 2014, vol. 597, pp. 370–375.

    Article  CAS  Google Scholar 

  19. Gu, D., Wang, H., Chang, F., et al., Proc. 8th Int. Conference on Laser Assisted Net Shape Engineering LANE 2014, Fürth, 2014; Phys. Procedia, 2014, vol. 56, pp. 108–116.

    Article  CAS  Google Scholar 

  20. Olakanmi, E.O., J. Mater. Process. Technol., 2013, vol. 213, pp. 1387–1405.

    Article  CAS  Google Scholar 

  21. Read, N., Wang, W., Essa, K., and Attallah, M.A., Mater. Des., 2015, vol. 65, pp. 417–424.

    Article  CAS  Google Scholar 

  22. Li, X.P., Kang, C.W., Huang, H., and Sercombe, T.B., Mater. Des., 2014, vol. 63, pp. 407–411.

    Article  CAS  Google Scholar 

  23. Ghosh, S.K., Bandyopadhyay, K., and Saha, P., Mater. Charact., 2014, vol. 93, pp. 68–78.

    Article  CAS  Google Scholar 

  24. Olakanmi, E.O., PhD Thesis, Leeds: Univ. of Leeds, 2008.

  25. Ahuja, B., Karg, M., Nagulin, K.Yu., and Schmidt, M., Phys. Procedia, 2014, vol. 56, pp. 135–146.

    Article  CAS  Google Scholar 

  26. Nie Xiaojia, Zhang Hu, Zhu Haihong, et al., J. Mater. Process. Technol., 2018, vol. 256, pp. 69–77.

    Article  CAS  Google Scholar 

  27. Cornelius, M., Karg, H., Ahuja B., Wiesenmayer, S., et al., Micromachines, 2017, vol. 8, no. 1, p. 23. https://doi.org/10.3390/mi8010023

    Article  Google Scholar 

  28. Gopienko, V.G., et al., Metallicheskie poroshki alyuminiya, magniya, titana i kremniya. Potrebitel’skie svoistva i oblasti primeneniya (Aluminum, Magnesium, Titanium, and Silicon Metal Powders. Consumptive Qualities and Fields of Application), Rudskoi, A.I., Ed., St. Petersburg: Peter the Great St. Petersburg Polytechnic Univ., 2012.

    Google Scholar 

  29. Marangoni, C., Sull’spansione Delle d’un Liguido Galleggianti Sulla Superfice di Altro Liquid, Pavia, 1865.

    Google Scholar 

  30. Louvis, E., Fox, P., and Sutcliffe, C.J., J. Mater. Process. Technol., 2011, vol. 211, pp. 275–284.

    Article  CAS  Google Scholar 

  31. Nizhenko, V.I. and Floka, L.I., Poverkhnostnoe natyazhenie zhidkikh metallov i splavov (odno-dvukhkomponentnye sistemy). Spravochnik (Surface Tension in Liquid Metals and Alloys (One- and Two-Component Systems). Handbook), Moscow: Metallurgiya, 1981.

Download references

Funding

The present work was performed in accordance with a state order to the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, no. AAAA-A19-119031890028-0 (structural unit no. 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Shevchenko.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.G., Eselevich, D.A., Popov, N.A. et al. Physicochemical Studies of Al–Cu Alloy Powder and Material on Its Basis Produced under Nonoptimal Conditions of 3D Printing. Prot Met Phys Chem Surf 56, 693–699 (2020). https://doi.org/10.1134/S2070205120040218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120040218

Keywords:

Navigation