Skip to main content
Log in

HAP Coatings for Biomedical Applications: Biocompatibility and Surface Protection Against Corrosion of Ti, Ti6Al4V and AISI 316L SS

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The implants used as cardio stents, orthopedic and dental implant may be subjected to biological corrosion. Uncoated implants can be corroded in various parts of the body due to acidic erosion and oxidation. This paper presents the findings of a coating technique for the deposition of hydroxyapatite (HAP) coatings on Ti, Ti6Al4V and AISI 316L stainless steel substrates (316L SS). HAP synthesized using the sol–gel technique have been successfully produced. The corrosion behaviors of uncoated and HAP coated substrates were investigated in Ringer’s and 0.9% NaCl solutions. The HAP coatings obtained by the sol gel method are effective in preventing corrosion and increased the polarization resistance values compared to the uncoated samples. Surface structures and chemical composition of the coatings were investigated by scanning electron microscopy (SEM) and energy diffraction X-ray (EDX) methods. SEM images of HAP coated substrates show cauliflower-like structures on the surface. Furthermore, the HAP coatings formed do not completely cover the surface. EDX analysis of HAP coated substrats were determined that there were Ca, O and P as well as oxides on the surface. The obtained HAP powder was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) methods. In XRD analysis, it was analysed that HAP powder consisted of CaP and HAP structures. In addition, FTIR spectrum was determined that characteristic HAP absorption bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Heiman, R.B., Surf. Coat. Technol., 2013, vol. 233, p. 27.

    Article  CAS  Google Scholar 

  2. Anjaneyulu, U., Priyadarshini, B., Arul Xavier Stango, S., Chellappa, M., Geetha, M., and Vijayalakshmi, U., Mater. Technol.: Adv. Perform. Mater., 2017, vol. 32, p. 800.

    Article  CAS  Google Scholar 

  3. Asri, R.I.M., Harun, W.S.W., Hassan, M.A., Ghani, S.A.C., and Buyong, Z., J. Mech. Behav. Biomed. Mater., 2016, vol. 57, p. 95.

    Article  CAS  Google Scholar 

  4. Asri, R.I.M., Harun, W.S.W., Samykano, M., Lah, N.A.C., Ghani, S.A.C., Tarlochan, F., and Raza, M.R., Mater. Sci. Eng., C, 2017, vol. 77, p. 1261.

    Article  CAS  Google Scholar 

  5. Owens, J., Singh, R.K., Foroutan, F., Alqaysi, M., Han, C.M., Mahapatra, C., Kim, H.W., and Knowles, J.C., Prog. Mater. Sci., 2016, vol. 77, p. 1.

    Article  CAS  Google Scholar 

  6. Chatzistavrou, X., Kontonasaki, E., Paraskevopoulos, K.M., Koidis, P., and Boccaccini, A.R., in Non-Metallic Biomaterials for Tooth Repair and Replacement, Vallittu, P., Ed., Woodhead Publ., 2013, pp. 194–231.

    Google Scholar 

  7. Pilliar, R.M., in Surface Coating and Modification of Metallic Biomaterials, Woodhead Publ., 2015, p. 185.

    Google Scholar 

  8. Büyüksagis, A., Ciftci, N., Ergun, Y., and Kayali, Y., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 5, pp. 670–679.

    Article  CAS  Google Scholar 

  9. Yang, Y., Zhang, B., Lu, J., Chen, J., Zhang, X., and Gu, Z., Appl. Surf. Sci., 2010, vol. 256, p. 2700.

    Article  CAS  Google Scholar 

  10. Blackwood, D.J. and Seah, K.W.H., Mater. Sci. Eng., C, 2009, vol. 29, p. 1233.

    Article  CAS  Google Scholar 

  11. Eliaz, N., Shmueli, S., Shur, I., Benayahu, D., Aronov, D., and Rosenman, G., Acta Biomater., 2009, vol. 5, p. 3178.

    Article  CAS  Google Scholar 

  12. Lakstein, D., Kopelovitch, W., Barkay, Z., Bahaa, M., Hendel, D., and Eliaz, N., Acta Biomater., 2009, vol. 5, p. 2258.

    Article  CAS  Google Scholar 

  13. Bauer, S., Schmuki, P., Von Der Mark, K., and Park, J., Prog. Mater. Sci., 2013, vol. 58, p. 261.

    Article  CAS  Google Scholar 

  14. Hieda, J., Sakaguchi, A., Nakano, M., Akasaka, H., and Ohtake, N., Appl. Surf. Sci., 2019, vol. 465, p. 509.

    Article  CAS  Google Scholar 

  15. Ummethala, R., Despang, F., Gelinsky, M., and Basu, B., Electrochim. Acta, 2011, vol. 56, p. 3809.

    Article  CAS  Google Scholar 

  16. Liu, F., Xu, J., Wang, F., Zhao, L., and Shimizu, T., Surf. Coat. Technol., 2010, vol. 204, p. 3294.

    Article  CAS  Google Scholar 

  17. Zhou, Y.L., Niinomi, M., Akahori, T., Fukui, H., and Toda, H., Mater. Sci. Eng., A, 2005, vol. 398, p. 28.

    Article  CAS  Google Scholar 

  18. Sul, Y.T., Johansson, C.B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A., and Albrektsson, T., Biomaterials, 2002, vol. 23, p. 491.

    Article  CAS  Google Scholar 

  19. Zhou, W., Shen, T., and Aung, N.N., Corros. Sci., 2010, vol. 52, p. 1035.

    Article  CAS  Google Scholar 

  20. Cheng, H.N. and Gross, R.A., in Polymer Biocatalysis and Biomaterials II, vol. 999 of ACS Symposium Series, Washington, DC: American Chemical Society, 2008, p. 1.

  21. Kannan, S., Balamurugan, A., and Rajeswari, S., Electrochim. Acta, 2004, vol. 49, p. 2395.

    CAS  Google Scholar 

  22. Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Faure, J., and Rajeswari, S., Ceram. Int., 2007, vol. 33, p. 605.

    CAS  Google Scholar 

  23. Zhang, S., Xianting, Z., Yongsheng, W., Kui, C., and Wenjian, W., Surf. Coat. Technol., 2006, vol. 200, p. 6350.

    CAS  Google Scholar 

  24. Gan, L. and Pilliar, R., Biomaterials, 2004, vol. 25, p. 5303.

    Google Scholar 

  25. Usinskas, P., Stankeviciute, Z., Beganskiene, A., and Kareiva, A., Surf. Coat. Technol., 2016, vol. 307, p. 935.

    CAS  Google Scholar 

  26. Vladescu, A., Braic, M., Ak Azem, F., Titorencu, I., Braic, V., Pruna, V., Kiss, A., Parau, A., and Birlik, I., Appl. Surf. Sci., 2015, vol. 354, p. 373.

    CAS  Google Scholar 

  27. Sridhar, T.M., Kamachi, U., and Subbaiyan, M., Corros. Sci., 2003, vol. 45, p. 2337.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of TUBITAK (project no. 107M563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Büyüksağiş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büyüksağiş, A., Çiftçi, N. HAP Coatings for Biomedical Applications: Biocompatibility and Surface Protection Against Corrosion of Ti, Ti6Al4V and AISI 316L SS. Prot Met Phys Chem Surf 56, 834–843 (2020). https://doi.org/10.1134/S2070205120040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120040085

Keywords:

Navigation