Skip to main content
Log in

Anti-Corrosive Potentials of 1,2,4-Triazole-5-thiones For Mild Steel 1030 in Acidic Environment

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosion is a phenomenon that directly related to the environment. The surface protection by potential inhibitors is one of the possible solutions to combat metal/or metallic alloy corrosion. Here, we are reporting two 1,2,4-triazole-5-thione derivatives – 4-amino-3-(N-phthallimidomethyl)-1,2,4-triazole-5-thione (Tz-1) and 3-(N-phthalimidomethyl)-4-(4-pyridine)amino-1,2,4-triazole-5-thione (Tz-2) for corrosion inhibition performance on mild steel (MS) surface in 1 M HCl. Electrochemical experiments were carried for potentiodynamic polarization (PDP) and impedance spectroscopic (EIS) measurements of corroded MS surface before and after the addition of compound’s concentrations. Variations in the PDP responses and in the relevant parameters after compound’s addition confirmed that both Tz-1 and Tz-2 are mixed-type inhibitors. An increase in the diameter of a capacitive loop with inhibitor’s concentration in EIS studies revealed the formation of an adsorbed layer on the MS surface; hence protecting corrosion reaction by controlling the charge transfer process. The data obtained from PDP and EIS were reasonably in good agreement. The IE% (inhibition efficiency) of both Tz compounds showed increasing trend as inhibitor’s concentration was increased and the values were evaluated up to 95% and 94%, respectively, at their optimal concentration of 2.5 × 10−4 M. Adsorption studies using the Langmuir model further confirmed the involvement of physisorption process on MS in the presence of both compounds. Theoretical DFT (density functional theory) analysis results were supportive to comparatively more inhibitory efficiency of Tz-1. SEM (scanning electron microscopic) studies indicated more resistive behavior of MS surface for corrosion in the presence of Tz-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Javaherdashti, R., Anti-Corros. Methods Mater., 2000, vol. 47, pp. 30–34.

    Google Scholar 

  2. Tavakkolizadeh, M. and Saadatmanesh, H., J. Compos. Constr., 2001, vol. 5, pp. 5200–5210.

    Google Scholar 

  3. Schmitt, G., Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control, New York: World Corrosion Organization, 2009.

    Google Scholar 

  4. Dwivedi, D., Lepková, K., and Becker, T., RSC Adv., 2017, vol. 7, pp. 4580–4610.

    CAS  Google Scholar 

  5. Lgaz, H., Salghi, R., Bhat, K.S., Chaouiki, A., and Shubhalaxmi, S.J., J. Mol. Liq., 2017, vol. 244, pp. 154–168.

    CAS  Google Scholar 

  6. Abdul Rahiman, A.F.S. and Sethumanickam, S., Arabian J. Chem., 2017, vol. 10, pp. S3358–S3366.

    CAS  Google Scholar 

  7. Camila, G.D. and Alexandre, F.G., INTECH, 2014, vol. 16, pp. 365–379. Dariva, C.G. and Galio, A.F., in Developments in Corrosion Protection, Aliofkhazraei, M., Ed., InTech, 2014, chap. 16, pp. 365–379.

  8. Esmaeili, N., Neshati, J., and Yavari, I., J. Ind. Eng. Chem., 2015, vol. 22, pp. 159–163.

    CAS  Google Scholar 

  9. Noor, E.A., Al-Moubaraki, A.H., and Ghamidi, A.A., Arabian J. Sci. Eng., 2019, vol. 44, pp. 237–250.

    CAS  Google Scholar 

  10. Singh, A., Singh, V.K., and Quraishi, M.A., Arabian J. Sci. Eng., 2013, vol. 38, pp. 85–97.

    CAS  Google Scholar 

  11. Altaf, F., Qureshi, R., Yaqub, A., and Ahmed, S., Chem. Pap., 2019, vol. 73, pp. 1221–1235.

    CAS  Google Scholar 

  12. Arshad, N., Akram, A.R., Akram, M., and Rasheed, I., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 2, pp. 343–358.

    CAS  Google Scholar 

  13. Arshad, N., Altaf, F., Akram, M., Ullah, M., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 4, pp. 770–780.

    CAS  Google Scholar 

  14. Daoud, D., Douadi, T., Hamani, H., Chafaa, S., and Al-Noaima, M., Corros. Sci., 2015, vol. 94, pp. 21–37.

    CAS  Google Scholar 

  15. Singh, A., Ansari, K.R., Haque, J., Dohare, P., Lgaz, H., Salghi, R., and Quraishi, M., J. Taiwan Inst. Chem. Eng., 2018, vol. 82, pp. 233–251.

    CAS  Google Scholar 

  16. Phadke, N.S., Vijaya, D.P.A., and Seranthimata, S., J. Bio-Tribo-Corros., 2017, vol. 3, p. 42.

    Google Scholar 

  17. Qi, M., Qi, S., He, X., Tang, Y., and Lu, G., Corros. Sci., 2017, vol. 129, pp. 91–101.

    Google Scholar 

  18. Yunus, U., Bhatti, M.H., Rahman, N., et al., J. Chem., 2013, vol. 2013, pp. 1–8.

    Google Scholar 

  19. Desai, P.S. and Indorwala, N.S., Int. J. Curr. Microbiol. Appl. Sci., 2015, vol. 4, pp. 928–938.

    CAS  Google Scholar 

  20. Hosseini, M., Mertens, S.F.L., and Arshadi, M.R., Corros. Sci., 2003, vol. 45, pp. 1473–1489.

    CAS  Google Scholar 

  21. Quraishi, M.A., Ambrish, S., Kumar, S.V., Kumar, D., and Singh, A.K., Mater. Chem. Phys., 2010, vol. 122, pp. 114–122.

    CAS  Google Scholar 

  22. Altaf, F., Qureshi, R., and Ahmed, S., J. Electroanal. Chem., 2011, vol. 659, no. 2, pp. 134–142.

    CAS  Google Scholar 

  23. Kumar, M.S., Kumar, S.L.A., and Sreekanth, A., Ind. Eng. Chem. Res., 2012, vol. 51, pp. 5408–5418.

    CAS  Google Scholar 

  24. Haddou, B.A., Chebabe, D., Dermaj, A., Benassaoui, H., El-Assyry, A., Hajjaji, N., Ahmed, S., and Srhiri, A., J. Mater. Environ. Sci., 2016, vol. 7, pp. 2191–2200.

    Google Scholar 

  25. Haddou, B.A., Chebabe, D., Dermaj, A., Benassaoui, H., El-Assyry, A., Hajjaji, N., Ahmed, S., and Srhiri, A., J. Mater. Environ. Sci., 2017, vol. 8, pp. 3943–2952.

    CAS  Google Scholar 

  26. Lebrini, M., Traisnel, M., and Lagrenee, M., Corros. Sci., 2008, vol. 50, pp. 473–479.

    CAS  Google Scholar 

  27. Banerjee, G. and Malhotra, S.N., Corrosion, 1992, vol. 48, pp. 10–15.

    CAS  Google Scholar 

  28. Deng, S. and Li, X., Corros. Sci., 2012, vol. 64, pp. 253–262.

    CAS  Google Scholar 

  29. Farsak, M., Kelesand, H., and Keles, M., Corros. Sci., 2015, vol. 98, pp. 223–232.

    CAS  Google Scholar 

  30. Karthik, G., Sundaravadivelu, M., and Rajkumar, P., Res. Chem. Intermed., 2015, vol. 41, pp. 1543–1558.

    CAS  Google Scholar 

  31. Obayes, H.R., Al-Amiery, A.A., Alwan, G.H., et al., J. Mol. Struct., 2017, vol. 1138, pp. 27–34.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Dr. Uzma Yunus (Department of Chemistry, Allama Iqbal Open University) for providing the compounds synthesized in her laboratory and reported somewhere else.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasima Arshad.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, N., Akram, M., Altaf, F. et al. Anti-Corrosive Potentials of 1,2,4-Triazole-5-thiones For Mild Steel 1030 in Acidic Environment. Prot Met Phys Chem Surf 56, 816–825 (2020). https://doi.org/10.1134/S207020512004005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512004005X

Keywords:

Navigation