Skip to main content
Log in

Investigation of Diffusion Kinetic Values of Boronized AISI 303 Steel by Pack Boronizing

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study, AISI 303 steels are boronized by pack boring method at 1123, 1173 and 1223 K for 2, 4 and 6 h. The morphology of the boride layers formed on the steel surfaces was examined by optical microscope. The hardness values were measured by the micro-hardness tester and the phases formed on the layer were determined by XRD method. In the XRD analysis, FeB, Fe2B, CrB and MnB phases were formed on the boride layer. Results showed that the thickness of boride layer obtained in boronized steel was increased by increasing the boring time and temperature. In addition, the thickness values of the boride layer varied depending on the chemical composition of the steel. The original hardness of AISI 303 steel was 240 HV0.05, while the boronizing process resulted in a hardness of 1897 HV0.05. The boride layer on the AISI 303 steel was formed and the thickness and growth kinetics of the layer were investigated. The activation energy (Q) of the boronized AISI 303 steel was determined as 236.502 kJ / mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gupta, R.K. and Birbilis, N., Corros. Sci., 2015, vol. 92, pp. 1–15.

    Article  CAS  Google Scholar 

  2. Karki, V. and Singh, M., Int. J. Mass Spectrom., 2017, vol. 421, pp. 51–60.

    Article  CAS  Google Scholar 

  3. Peng, Y., Chen, C., Li, X., Gong, J., Jiang, Y., and Liu, Z., Surf. Coat. Technol., 2017, vol. 328, pp. 420–427.

    Article  CAS  Google Scholar 

  4. Almuaili, F.A., McDonald, S.A., Withers, P.J., Cook, A.B., and Engelberg, D.L., Corros. Sci., 2017, vol. 125, pp. 12–19.

    Article  CAS  Google Scholar 

  5. Sun, Y. and Bailey, R., Corros. Sci., 2018, vol. 139, pp. 197–205.

    Article  Google Scholar 

  6. Zheng, Z.B. and Zheng, Y.G., Corros. Sci., 2016, vol. 112, pp. 657–668.

    Article  CAS  Google Scholar 

  7. Lo, K.H., Shek, C.H., Lai, J.K.L., Mater. Sci. Eng., R, 2009, vol. 65, nos. 4–6, pp. 39–104.

    Article  Google Scholar 

  8. Sullivan, D.O. and Cotterell, M., J. Mater. Process. Technol., 2002, vol. 124, nos. 1–2, pp. 153–159.

    Article  Google Scholar 

  9. Wang, H., Jeong, Y., Clausen, B., Liu, Y., McCabe, R.J., Barlat, F., and Tomé, C.N., Mater. Sci. Eng., A, 2016, vol. 649, pp. 174–183.

    Article  CAS  Google Scholar 

  10. Kim, Y.H., Kim, K.Y., and Lee, Y.D., Mater. Manuf. Processes, 2004, vol. 19, no. 1, pp. 51–59.

    Article  CAS  Google Scholar 

  11. Ebrahimi, N., Momeni, M., Kosari, A., Zakeri, M., and Moayed, M.H., Corros. Sci., 2012, vol. 59, pp. 96–102.

    Article  CAS  Google Scholar 

  12. Park, I.-J., Lee, S.-M., Kang, M., Lee, S., and Lee, Y.-K., J. Alloys Compd., 2015, vol. 619, pp. 205–210.

    Article  CAS  Google Scholar 

  13. Seriacopi, V., Fukumasu, N.K., Souza, R.M., and Machado, I.F., Procedia CIRP, 2016, vol. 45, pp. 187–190.

    Article  Google Scholar 

  14. Bejar, M.A. and Moreno, E., J. Mater. Process. Technol., 2006, vol. 173, no. 3, pp. 352–358.

    Article  CAS  Google Scholar 

  15. Ozbek, I., Sen, S., Ipek, M., Bindal, C., Zeytin, S., and Ucisik, A.H., Vacuum, 2004, vol. 73, nos. 3–4, pp. 643–648.

    Article  CAS  Google Scholar 

  16. Celikyurek, I., Baksan, B., Torun, O., and Gürler, R., Intermetallics, 2006, vol. 14, no. 2, pp. 136–141.

    Article  CAS  Google Scholar 

  17. Allaouı, O., Bouaouadja, N., and Saındernan, G., Surf. Coat, Technol., 2006, vol. 201, no. 6, pp. 3475–3482.

    Article  Google Scholar 

  18. Ozdemir, O., Omar, M.A., Usta, M., Zeytin, S., Bindal, C., and Ucisik, A.H., Vacuum, 2008, vol. 83, no. 1, pp. 175–179.

    Article  CAS  Google Scholar 

  19. Efe, G.Ç., İpek, M., Özbek, İ., and Bindal, C., Mater. Charact., 2008, vol. 59, no. 1, pp. 23–31.

    Article  CAS  Google Scholar 

  20. Kayali, Y., J. Balk. Tribol. Assoc., 2013, vol. 19, no. 3, pp. 340–353.

    CAS  Google Scholar 

  21. Kayali, Y., Phys. Met. Metallogr., 2013, vol. 114, no. 12, pp. 1061–1068.

    Article  Google Scholar 

  22. Taktak, S., Mater. Des., 2007, vol. 28, no. 6, pp. 1836–1843.

    Article  CAS  Google Scholar 

  23. Kayali, Y., Güneş, I., and Ulu, S., Vacuum, 2012, vol. 86, no. 10, pp. 1428–1434.

    Article  CAS  Google Scholar 

  24. Ozbek, I. and Bindal, C., Vacuum, 2011, vol. 86, no. 4, pp. 391–397.

    Article  CAS  Google Scholar 

  25. Yoon, J.H., Jee, Y.K., and Lee, S.Y., Surf. Coat. Technol., 1999, vol. 112, nos. 1–3, pp. 71–75.

    Article  CAS  Google Scholar 

  26. Taktak, S., J. Mater. Sci., 2006, vol. 41, pp. 7590–7596.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Kayali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusuf Kayali, Ersan Mertgenç Investigation of Diffusion Kinetic Values of Boronized AISI 303 Steel by Pack Boronizing. Prot Met Phys Chem Surf 56, 151–155 (2020). https://doi.org/10.1134/S2070205120010116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120010116

Keywords:

Navigation