Skip to main content
Log in

Effect of Phenols on Biological Zinc Corrosion

  • MICROBIAL CORROSION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

It has been shown that treating a zinc surface with phenols (phenol, 2,6-di-tert-butyl-4-methylphenol (ionol), hydroquinone, pyrocatechol, 3,5-di-tert-butyl-pyrocatechol) increased the corrosive damage of the metal caused by microorganisms. It has been suggested that corrosion stimulation was caused by radical processes involving phenols adsorbed on the metal surface and products of oxygen biotransformation by microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Updegraff, D.M., Corrosion, 1955, vol. 11, no. 10, p. 44.

    Article  Google Scholar 

  2. Little, B.J. and Lee, J.S., Int. Mater. Rev., 2014, vol. 59, no. 7, p. 384.

    Article  CAS  Google Scholar 

  3. Kan, J., et al., J. Appl. Microbiol., 2011, vol. 111, p. 329.

    Article  CAS  Google Scholar 

  4. Javaherdashti, R., Microbiologically Influenced Corrosion - An Engineering Insight, London: Springer, 2008.

    Google Scholar 

  5. Little, B.J. and Lee, J.S., Microbiologically Influenced Corrosion, Hoboken, NJ: John Wiley and Sons, 2007.

    Book  Google Scholar 

  6. Emerson, D., et al., Annu. Rev. Microbiol., 2010, vol. 63, p. 561.

    Article  Google Scholar 

  7. Li, K., Whitfield, M., and Van Vliet, K.J., Corros. Rev., 2013, vol. 31, p. 73.

    Article  CAS  Google Scholar 

  8. Karpov, V.A., Beleneva, I.A., Kharchenko, U.V., and Zhukova, N.V., Korroz.: Mater., Zashch., 2010, no. 6, pp. 40–47.

  9. Hall-Stoodley, L., Costerton, J.W., and Stoodley, P., Nat. Rev. Microbiol., 2004, vol. 2, p. 95.

    Article  CAS  Google Scholar 

  10. Flemming, H.-C. and Wingender, J., Nat. Rev. Microbiol., 2010, vol. 8, p. 623.

    Article  CAS  Google Scholar 

  11. Taylor, P.K., et al., J. Biotechnol., 2014, vol. 191, pp. 121–130.

    Article  CAS  Google Scholar 

  12. Neu, T.R., Manz, B., et al., FEMS Microbiol. Ecol., 2010, vol. 72, p. 1.

    Article  CAS  Google Scholar 

  13. Chelnokova, M.V., Belov, D.V., Kalinina, A.A., Sokolova, T.N., Smirnov, V.F., and Kartashov, V.R., Korroz.: Mater., Zashch., 2011, no. 3, pp. 19–26.

  14. Belov, D.V., Kalinina, A.A., Sokolova, T.N., Kuzina, O.V., and Kartashov, V.R., Korroz.: Mater., Zashch., 2011, no. 7, pp. 42–47.

  15. Belov, D.V., Kalinina, A.A., Sokolova, T.N., Smir-nov, V.F., Chelnokova, M.V., and Kartashov, V.R., Prikl. Biokhim. Mikrobiol., 2012, vol. 48, no. 3, p. 302.

    CAS  Google Scholar 

  16. Belov, D.V., Chelnokova, M.V., Sokolova, T.N., Smirnov, V.F., and Kartashov, V.R., Korroz.: Mater., Zashch., 2009, no. 11, pp. 43–48.

  17. Auchere, F. and Rusnak, F., J. Biol. Inorg. Chem., 2002, vol. 7, p. 664.

    Article  CAS  Google Scholar 

  18. Cabiscol, E., Tamarit, J., and Ros, J., Int. Microbiol., 2000, vol. 3, p. 3.

    CAS  Google Scholar 

  19. Nepryakhina, O.K., Kuznetsova, A.Yu., Lyamzaev, K.G., Izyumov, D.S., Pletjushkina, O.Yu., Chernyak, B.V., and Skulachev, V.P., Dokl. Biol. Sci., 2008, vol. 420, no. 4, p. 221.

    Article  Google Scholar 

  20. Skulachev, V.P., Biochemistry (Moscow), 1998, vol. 63, no. 11, pp. 1335–1343.

    CAS  Google Scholar 

  21. Radostin, S.Yu., Kalinina, A.A., Sokolova, T.N., Kartashov, V.R., Razov, E.N., and Smirnov, V.F., Korroz.: Mater., Zashch., 2017, no. 4, pp. 42–47.

  22. Sawyer, D.T. and Gibian, M.J., Tetrahedron, 1979, vol. 35, p. 1471.

    Article  CAS  Google Scholar 

  23. Bielski, B.H.J., Cabelli, D.E., Arudi, R.L., and Ross, A.B., J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 4, p. 1041.

    Article  CAS  Google Scholar 

  24. Nanni, E.J., Stallings, M.D., and Sawyer, D.T., J. Am. Chem. Soc., 1980, vol. 102, no. 13, p. 4481.

    Article  CAS  Google Scholar 

  25. Malovskaya, L.A., Petrikevich, D.K., Timoshchuk, V.A., and Shadyro, O.I., Russ. J. Gen. Chem., 1996, vol. 66, no. 11, p. 1842.

    Google Scholar 

  26. Lugauskas, A., Prosycevas, I., Ramanauskas, R., Griguceviciene, A., Selskiene, A., and Pakstas, V., Mater. Sci., 2009, vol. 15, no. 3, p. 224.

    Google Scholar 

  27. Kalinina, A.A., Radostin, S.Yu., Khlopin, S.Yu., Sokolova, T.N., Moskvichev, A.N., Razov, E.N., and Kartashov, V.R., Korroz.: Mater., Zashch., 2014, no. 3, pp. 44–47.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kalinina.

Additional information

Translated by A.G. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, A.A., Temnova, M.V., Sokolova, T.N. et al. Effect of Phenols on Biological Zinc Corrosion. Prot Met Phys Chem Surf 55, 1362–1367 (2019). https://doi.org/10.1134/S2070205119070086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119070086

Keywords:

Navigation