Skip to main content
Log in

Thermally Initiated Processes in Activated Metal–Polymer Composites Obtained by High-Pressure Plastic Deformation of Aluminum-Based Mixtures

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The passivating properties of various polymer matrices and processes of their thermal decomposition in the presence of a filler, i.e., active aluminum particles, are studied for an activated metal–polymer composite obtained by vigorous plastic deformation of aluminum powder–polymer mixtures, same as the processes of the further aluminum depassivation and oxidation, when the polymer phase has already been destroyed. For this, mixtures of different polymers with 50 and 80 wt % of aluminum are subjected to plastic deformation under the pressure of 1 and 4 GPa and then are studied using the thermogravimetric method in the temperature range of 20–800°C in air and in nitrogen. A decrease in the sample mass related to polymer decomposition is observed in the range of 20–450°C, while the mass increases due to aluminum oxidation and nitrogenation in the range of 450–800°C. Oxygen activity is lower than nitrogen activity in the low-temperature range and higher in the high-temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Polymer Blends, Paul, D.R. and Newman, S., Eds., New York: Academic, 1978.

    Google Scholar 

  2. Hybrid Nanocomposites for Nanotechnology, Mehrani, L., Ed., Science, 2009.

  3. Oxide Thin Films, Multilayers, and Nanocomposites, Mele, P., Endo, T., Arisawa, S., Li., C., and Tsuchiya, T., Eds., Science, 2015.

  4. Ivanov, V.G. and Gavrilyuk, O.V., Fiz. Goreniya Vzryva, 1999, vol. 35, no. 6, pp. 53–60.

    Google Scholar 

  5. Il'in, A.P., Gromov, A.A., and Yablunovskii, G.V., Fiz. Goreniya Vzryva, 2001, vol. 37, no. 4, pp. 58–62.

    Google Scholar 

  6. Sandaram, D.S., Yang, V., and Zarko, V.E., Combust., Explos., Shock Waves, 2015, vol. 51, no. 2, pp. 173–196.

    Article  Google Scholar 

  7. Gromov, A.A., Popenko, E.M., and Il’in, A.P., Khim. Fiz., 2005, vol. 24, no. 4, pp. 69–83.

    Google Scholar 

  8. Dreizin, E.L., Shosin, Yu.L., Mudryy, R.S., and Hoffman, V.K., Combust. Flame, 2002, vol. 130, no. 4, pp. 381–387.

    Article  Google Scholar 

  9. Breitler, A.L., Mal’tsev, V.M., and Popov, E.I., Fiz. Goreniya Vzryva, 1990, vol. 26, no. 1, pp. 97–104.

    Google Scholar 

  10. Shevchenko, V.G., Kononenko, V.I., Bulatov, M.L., Latosh, I.N., and Chupova, I.A., Fiz. Goreniya Vzryva, 1998, vol. 34, no. 1, pp. 45–49.

    Google Scholar 

  11. Gromov, A.A., Il’in, A.P., Boze-Bat, U., and Taipel’, U., Fiz. Goreniya Vzryva, 2006, vol. 42, no. 2, pp. 61–69.

    Google Scholar 

  12. Lewis, W.K., Rumchik, C.G., Smith, M.J., Fernando, K.A.S., Crouse, C.A., Spowart, J.E., Guliants, E.A., and Bunker, C.E., J. Appl. Phys., 2013, vol. 113, p. 044907. https://doi.org/10.1063/1.4790159

    Article  Google Scholar 

  13. Zhigach, A.N., Leipunskii, I.O., Pivkina, A.N., Muravyev, N.V., Monogarov, K.A., Kuskov, M.L., Afanasenkova, E.S., Berezkina, N.G., Pshechkov, P.A., and Bragin, A.A., Combust., Explos., Shock Waves, 2015, vol. 51, no. 1, pp. 100–106.

    Article  Google Scholar 

  14. Kotenev, V.A., Zhorin, V.A., Kiselev, M.R., Vysotskii, V.V., Averin, A.A., Roldugin, V.I., and Tsivadze, A.Yu., Fizikokhim. Poverkhn. Zashch. Mater., 2015, vol. 51, no. 5, pp. 512–516.

    Google Scholar 

  15. Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2000, vol. 36, no. 5, pp. 409–418.

    Google Scholar 

  16. Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 5, pp. 853–858.

    Article  Google Scholar 

  17. Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, pp. 1075–1081.

    Article  Google Scholar 

  18. Zhorin, V.A., Kiselev, M.R., and Roldugin, V.I., Russ. J. Appl. Chem., 2012, vol. 85, no. 4, pp. 589–593.

    Article  Google Scholar 

  19. Zhorin, V.A., Kiselev, M.R., and Roldugin, V.I., Russ. J. Appl. Chem., 2013, vol. 86, no. 1, pp. 15–19.

    Article  Google Scholar 

  20. Zhorin, V.A., Kiselev, M.R., and Roldugin, V.I., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 3, pp. 406–411.

    Article  Google Scholar 

  21. Zhorin, V.A., Kiselev, M.R., and Roldugin, V.I., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 11, pp. 2070–2077.

    Article  Google Scholar 

  22. Zhorin, V.A., Kiselev, M.R., Grachev, A.V., and Ladygina, T.A., Combust., Explos., Shock Waves, 2018, vol. 54, no. 1, pp. 47–57.

    Article  Google Scholar 

  23. Zhorin, V.A. and Kiselev, M.R., Plast. Massy, 2017, nos. 3–4, pp. 6–11.

  24. Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 819–825.

    Article  Google Scholar 

  25. Zhorin, V.A., Kiselev, M.R., and Kotenev, V.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 4, pp. 703–710.

    Article  Google Scholar 

  26. Il’in, A.P., Yablunovskii, G.V., and Gromov, A.A., Fiz. Goreniya Vzryva, 1996, vol. 32, no. 2, pp. 108–110.

    Google Scholar 

  27. Il’in, A.P. and Tolbanova, L.O., Combust., Explos., Shock Waves, 2007, vol. 43, no. 4, pp. 423–428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zhorin.

Additional information

Translated by M. Ehrenburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhorin, V.A., Kiselev, M.R. & Kotenev, V.A. Thermally Initiated Processes in Activated Metal–Polymer Composites Obtained by High-Pressure Plastic Deformation of Aluminum-Based Mixtures. Prot Met Phys Chem Surf 55, 460–467 (2019). https://doi.org/10.1134/S2070205119040312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119040312

Keywords:

Navigation