Advertisement

Microstructure and Corrosion Behavior of Laser Surface Alloyed Magnesium Alloys with TiO2-CeO2

  • Lingqian Wang
  • Jiansong ZhouEmail author
  • Youjun Yu
  • Chun Guo
NEW SUBSTANCES, MATERIALS AND COATINGS
  • 15 Downloads

Abstract

TiO2–CeO2 ceramic oxides were prepared on magnesium alloys by laser surface alloying for corrosion protection. The microstructure and composition of laser modified surfaces were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), optical microscope (OM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The corrosion behavior was analyzed by electrochemical and salt spray tests. The effect of relative proportion between the two ceramic components on corrosion resistance of laser alloyed magnesium alloys was investigated. Results showed that there was a margin improvement in corrosion resistance after laser surface alloying with TiO2 and CeO2 at the ratio of 4 : 1 (wt %) due to the protection effect of oxides. When the content of CeO2 increased, and the ratio of TiO2 and CeO2 was 1 : 4 (wt %), defects were introduced for the poor compatibility between CeO2 and Mg matrix. The defects speed up the failure of the layer, and the corrosion resistance was even decreased compared with the as-received magnesium alloy.

Keywords:

magnesium alloy laser surface alloying TiO2–CeO2 microstructure corrosion behavior 

Notes

FUNDING

The authors acknowledge the financial supports by National Natural Science Foundation of China (Grant nos. 51505464 and 51475444).

REFERENCES

  1. 1.
    Bala Srinivasan, P., Riekehr, S., Blawert, C., et al., Mater. Sci. Eng., A, 2009, vol. 517, p. 197.CrossRefGoogle Scholar
  2. 2.
    Khalfaoui, W., Valerio, E., Masse, J.E., et al., Opt. Laser Eng., 2010, vol. 48, p. 926.CrossRefGoogle Scholar
  3. 3.
    Bobzin, K., Kopp, N., Warda, T., et al., J. Therm. Spray Technol., 2013, vol. 22, p. 207.CrossRefGoogle Scholar
  4. 4.
    Raman, R.K.S., Murray, S., and Brandt, M., Surf. Eng., 2007, vol. 23, p. 107.CrossRefGoogle Scholar
  5. 5.
    Coy, A.E., Viejo, F., Garcia-Garcia, F.J., et al., Corros. Sci., 2010, vol. 52, p. 387.CrossRefGoogle Scholar
  6. 6.
    Evans, H.E., Surf. Coat. Technol., 2011, vol. 206, p. 1512.CrossRefGoogle Scholar
  7. 7.
    Phani, A.R., Gammel, F.J., Hack, T., et al., Mater. Corros., 2005, vol. 56, p. 77.CrossRefGoogle Scholar
  8. 8.
    He, X.M., Liu, X.B., Wang, M.D., et al., Appl. Surf. Sci., 2011, vol. 258, p. 535.CrossRefGoogle Scholar
  9. 9.
    Gao, Y.L., Wang, C.S., Yao, M., et al., Appl. Surf. Sci., 2007, vol. 253, p. 5306.CrossRefGoogle Scholar
  10. 10.
    Qian, J.G., Zhang, J.X., Xu, M., et al., Rare Met. Mater. Eng., 2011, vol. 40, p. 221.Google Scholar
  11. 11.
    Zaharescu, M., Predoana, L., Barau, A., et al., Corros. Sci., 2009, vol. 51, p. 1998.CrossRefGoogle Scholar
  12. 12.
    Zaharescu, M., Nicolescu, M., Gartner, M., et al., J. Phys.: Conf. Ser., 2012, vol. 356, p. 1.Google Scholar
  13. 13.
    Lokhande, C.D., Min, S.K., Jung, K.D., et al., J. Mater. Sci., 2004, vol. 39, p. 6607.CrossRefGoogle Scholar
  14. 14.
    Zaharescu, M., Wittmar, A., Teodorescu, V., et al., Z. Anorg. Allg. Chem., 2009, vol. 635, p. 1915.CrossRefGoogle Scholar
  15. 15.
    Shibli, S.M.A. and Chacko, F., Surf. Coat. Technol., 2011, vol. 205, p. 2931.CrossRefGoogle Scholar
  16. 16.
    Cui, Z.Q., Yang, H.W., Wang, W.X, et al., J. Wuhan Univ. Technol., Mater. Sci. Ed., 2012, vol. 27, p. 1042.Google Scholar
  17. 17.
    Gao, Y.L., Wang, C.S., Lin, Q., et al., Surf. Coat. Technol., 2006, vol. 201, p. 2701.CrossRefGoogle Scholar
  18. 18.
    Huang, K.J., Yan, L., Wang, C.S., et al., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, p. 1351.CrossRefGoogle Scholar
  19. 19.
    Dutta Majumdar, J., Maiwald, T., Galun, R., et al., Laser Eng., 2002, vol. 12, p. 147.CrossRefGoogle Scholar
  20. 20.
    Wang, A.H. and Yue, T.M., Compos. Sci. Technol., 2001, vol. 61, p. 1549.CrossRefGoogle Scholar
  21. 21.
    Chen, J.F., Zhang, Y.K., and Xu, R.J., Laser Technol., 2008, vol. 32, p. 293.Google Scholar
  22. 22.
    Das, M., Balla, V.K., Basu, D., et al., Scr. Mater., 2010, vol. 63, p. 438.CrossRefGoogle Scholar
  23. 23.
    Zheng, B.J., Chen, X.M., and Lian, J.S., Opt. Laser Eng., 2010, vol. 48, p. 526.CrossRefGoogle Scholar
  24. 24.
    Wang, C.S., Chen, Y.Z., Li, T., et al., Appl. Surf. Sci., 2009, vol. 256, p. 1609.CrossRefGoogle Scholar
  25. 25.
    Yao, Z.P., Jiang, Z.H., Sun, X.T., et al., Mater. Chem. Phys., 2005, vol. 92, p. 408.CrossRefGoogle Scholar
  26. 26.
    Heakal, F.E.T., Fekry, A.M., and Fatayerji, M.Z., Electrochim. Acta, 2009, vol. 54, p. 1545.CrossRefGoogle Scholar
  27. 27.
    Guo, H.F. and An, M.Z., Appl. Surf. Sci., 2005, vol. 246, pp. 229–238.CrossRefGoogle Scholar
  28. 28.
    Wang, L.Q., Zhou, J.S., Liang, J., et al., J. Electrochem. Soc., 2014, vol. 161, p. C20.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Lingqian Wang
    • 1
  • Jiansong Zhou
    • 1
    Email author
  • Youjun Yu
    • 1
  • Chun Guo
    • 1
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of SciencesLanzhouP.R. China

Personalised recommendations