Skip to main content
Log in

Microstructure and Corrosion Behavior of Laser Surface Alloyed Magnesium Alloys with TiO2-CeO2

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

TiO2–CeO2 ceramic oxides were prepared on magnesium alloys by laser surface alloying for corrosion protection. The microstructure and composition of laser modified surfaces were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), optical microscope (OM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The corrosion behavior was analyzed by electrochemical and salt spray tests. The effect of relative proportion between the two ceramic components on corrosion resistance of laser alloyed magnesium alloys was investigated. Results showed that there was a margin improvement in corrosion resistance after laser surface alloying with TiO2 and CeO2 at the ratio of 4 : 1 (wt %) due to the protection effect of oxides. When the content of CeO2 increased, and the ratio of TiO2 and CeO2 was 1 : 4 (wt %), defects were introduced for the poor compatibility between CeO2 and Mg matrix. The defects speed up the failure of the layer, and the corrosion resistance was even decreased compared with the as-received magnesium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bala Srinivasan, P., Riekehr, S., Blawert, C., et al., Mater. Sci. Eng., A, 2009, vol. 517, p. 197.

    Article  Google Scholar 

  2. Khalfaoui, W., Valerio, E., Masse, J.E., et al., Opt. Laser Eng., 2010, vol. 48, p. 926.

    Article  Google Scholar 

  3. Bobzin, K., Kopp, N., Warda, T., et al., J. Therm. Spray Technol., 2013, vol. 22, p. 207.

    Article  Google Scholar 

  4. Raman, R.K.S., Murray, S., and Brandt, M., Surf. Eng., 2007, vol. 23, p. 107.

    Article  Google Scholar 

  5. Coy, A.E., Viejo, F., Garcia-Garcia, F.J., et al., Corros. Sci., 2010, vol. 52, p. 387.

    Article  Google Scholar 

  6. Evans, H.E., Surf. Coat. Technol., 2011, vol. 206, p. 1512.

    Article  Google Scholar 

  7. Phani, A.R., Gammel, F.J., Hack, T., et al., Mater. Corros., 2005, vol. 56, p. 77.

    Article  Google Scholar 

  8. He, X.M., Liu, X.B., Wang, M.D., et al., Appl. Surf. Sci., 2011, vol. 258, p. 535.

    Article  Google Scholar 

  9. Gao, Y.L., Wang, C.S., Yao, M., et al., Appl. Surf. Sci., 2007, vol. 253, p. 5306.

    Article  Google Scholar 

  10. Qian, J.G., Zhang, J.X., Xu, M., et al., Rare Met. Mater. Eng., 2011, vol. 40, p. 221.

    Google Scholar 

  11. Zaharescu, M., Predoana, L., Barau, A., et al., Corros. Sci., 2009, vol. 51, p. 1998.

    Article  Google Scholar 

  12. Zaharescu, M., Nicolescu, M., Gartner, M., et al., J. Phys.: Conf. Ser., 2012, vol. 356, p. 1.

    Google Scholar 

  13. Lokhande, C.D., Min, S.K., Jung, K.D., et al., J. Mater. Sci., 2004, vol. 39, p. 6607.

    Article  Google Scholar 

  14. Zaharescu, M., Wittmar, A., Teodorescu, V., et al., Z. Anorg. Allg. Chem., 2009, vol. 635, p. 1915.

    Article  Google Scholar 

  15. Shibli, S.M.A. and Chacko, F., Surf. Coat. Technol., 2011, vol. 205, p. 2931.

    Article  Google Scholar 

  16. Cui, Z.Q., Yang, H.W., Wang, W.X, et al., J. Wuhan Univ. Technol., Mater. Sci. Ed., 2012, vol. 27, p. 1042.

    Google Scholar 

  17. Gao, Y.L., Wang, C.S., Lin, Q., et al., Surf. Coat. Technol., 2006, vol. 201, p. 2701.

    Article  Google Scholar 

  18. Huang, K.J., Yan, L., Wang, C.S., et al., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, p. 1351.

    Article  Google Scholar 

  19. Dutta Majumdar, J., Maiwald, T., Galun, R., et al., Laser Eng., 2002, vol. 12, p. 147.

    Article  Google Scholar 

  20. Wang, A.H. and Yue, T.M., Compos. Sci. Technol., 2001, vol. 61, p. 1549.

    Article  Google Scholar 

  21. Chen, J.F., Zhang, Y.K., and Xu, R.J., Laser Technol., 2008, vol. 32, p. 293.

    Google Scholar 

  22. Das, M., Balla, V.K., Basu, D., et al., Scr. Mater., 2010, vol. 63, p. 438.

    Article  Google Scholar 

  23. Zheng, B.J., Chen, X.M., and Lian, J.S., Opt. Laser Eng., 2010, vol. 48, p. 526.

    Article  Google Scholar 

  24. Wang, C.S., Chen, Y.Z., Li, T., et al., Appl. Surf. Sci., 2009, vol. 256, p. 1609.

    Article  Google Scholar 

  25. Yao, Z.P., Jiang, Z.H., Sun, X.T., et al., Mater. Chem. Phys., 2005, vol. 92, p. 408.

    Article  Google Scholar 

  26. Heakal, F.E.T., Fekry, A.M., and Fatayerji, M.Z., Electrochim. Acta, 2009, vol. 54, p. 1545.

    Article  Google Scholar 

  27. Guo, H.F. and An, M.Z., Appl. Surf. Sci., 2005, vol. 246, pp. 229–238.

    Article  Google Scholar 

  28. Wang, L.Q., Zhou, J.S., Liang, J., et al., J. Electrochem. Soc., 2014, vol. 161, p. C20.

    Article  Google Scholar 

Download references

FUNDING

The authors acknowledge the financial supports by National Natural Science Foundation of China (Grant nos. 51505464 and 51475444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, J., Yu, Y. et al. Microstructure and Corrosion Behavior of Laser Surface Alloyed Magnesium Alloys with TiO2-CeO2. Prot Met Phys Chem Surf 55, 729–734 (2019). https://doi.org/10.1134/S2070205119040282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119040282

Keywords:

Navigation