Corrosion Behaviour of 316L Stainless Steel in Hot Dilute Sulphuric Acid Solution with Sulphate and NaCl

  • Jian Zhang
  • Pengfei Ju
  • Chaoli Wang
  • Yuchao Dun
  • Xuhui ZhaoEmail author
  • Yu Zuo
  • Yuming TangEmail author


The corrosion behaviour of 316L stainless steel (316L SS) in 10% H2SO4 solution (94°C) with various concentrations of NaCl (0–0.085 mol/L) was studied by immersion corrosion test and polarization methods, combined with SEM/EDS, XPS and XRD tests. The influence of NaCl on the corrosion of 316L SS was investigated. The results showed that at lower NaCl contents (0–0.0085 mol/L), the steel presented a general corrosion characteristic with a higher corrosion speed and the corrosion rate increased with the NaCl content. At higher NaCl contents (≥0.017 mol/L), the corrosion rate decreased remarkably due to the protective corrosion products precipitation which contained metallic sulphates and NaHSO4. However, the higher concentration of chloride ions caused micron pitting-like local dissolution on the surface. The addition of Na2SO4 effectively inhibited general corrosion of the steel because of a dense and continuous products layer enriched with more NaHSO4 and metallic sulphates formed.


316L SS hot dilute sulphuric acid corrosion sodium chloride sodium sulphate corrosion products 



The authors are thankful to the National Natural Science Foundation of China (Contract 51210001).


  1. 1.
    Varga, K., Baradlai, P., Barnar, W.O., et al., Electrochim. Acta, 1997, vol. 42, p. 25.CrossRefGoogle Scholar
  2. 2.
    Xie, L.Z., Corros. Prot., 2002, vol. 10, p. 466.Google Scholar
  3. 3.
    Luo, W., Jian, Y.P., Liao, Z.L., et al., J. Nanchang Univ., 2001, vol. 23, p. 65.Google Scholar
  4. 4.
    Hong, T. and Nagumo, M., Corros. Sci., 1997, vol. 39, p. 961.CrossRefGoogle Scholar
  5. 5.
    Meguid, E.A. Abd El Mahmoud, N.A., and Abd El Rehim, S.S., Mater. Chem. Phys., 2000, vol. 63, p. 67.CrossRefGoogle Scholar
  6. 6.
    Ernst, P. and Newman, R.C., Corros. Sci., 2002, vol. 44, p. 943.CrossRefGoogle Scholar
  7. 7.
    Zuo, Y., Wang, H.T., Zhao, J.M, and Xiong, J.P., Corros. Sci., 2002, vol. 44, p. 13.CrossRefGoogle Scholar
  8. 8.
    Anderko, A., Sridhar, N., Jakab, M.A., and Tormoen, G., Corros. Sci., 2004, vol. 46, p. 1593.CrossRefGoogle Scholar
  9. 9.
    Deng, B., Jiang, Y.M., Liao, J.X., et al., Appl. Surf. Sci., 2007, vol. 253, p. 7369.CrossRefGoogle Scholar
  10. 10.
    Wendt, J.L. and Chin, D.-T., Corros. Sci., 1985, vol. 25, p. 901.CrossRefGoogle Scholar
  11. 11.
    Jegdić, B., Dražić, D.M., and Popić, J.P., Corros. Sci., 2008, vol. 50, p. 1235.CrossRefGoogle Scholar
  12. 12.
    Aouina, N., Balbaud-Célérier, F., Huet, F., et al., Electrochim. Acta, 2011, vol. 56, p. 8589.CrossRefGoogle Scholar
  13. 13.
    Aouina, N., Balbaud-Célérier, F., Huet, F., et al., Electrochim. Acta, 2013, vol. 104, p. 274.CrossRefGoogle Scholar
  14. 14.
    Guo, T.M., Zhang, D.C., Han, C.S., et al., Adv. Mater. Res., 2012, vols. 476–478, p. 263.CrossRefGoogle Scholar
  15. 15.
    Lo, I.H. and Tsai, W.T., Corros. Sci., 2007, vol. 49, p. 1847.CrossRefGoogle Scholar
  16. 16.
    Rodda, J.R. and Ives, M.B., Corrosion, 2003, vol. 59, p. 363.CrossRefGoogle Scholar
  17. 17.
    Li, Y., Ives, M.B., Coley, K.S., and Rodda, J.R., Corros. Sci., 2004, vol. 46, p. 1969.CrossRefGoogle Scholar
  18. 18.
    Hashiro, H. and Tanno, K., Corros. Sci., 1990, vol. 31, p. 485.CrossRefGoogle Scholar
  19. 19.
    Niu, L.B. and Nakada, K., Corros. Sci., 2015, vol. 96, p. 171.CrossRefGoogle Scholar
  20. 20.
    Femenia, M., Pan, J., and Leygraf, C., J. Electrochem. Soc., 2002, vol. 149, p. B187.CrossRefGoogle Scholar
  21. 21.
    Ogura, S., Sugimoto, K., and Sawada, Y., Corros. Sci., 1976, vol. 16, p. 323.CrossRefGoogle Scholar
  22. 22.
    Levi, T.P., Lichti, K.A., and Tack, A.J., Mater. High Temp., 2014, vol. 18, p. 65.CrossRefGoogle Scholar
  23. 23.
    Pardo, A., Merion, M.C., Coy, A.E., et al., Corros. Sci., 2008, vol. 50, p. 780.CrossRefGoogle Scholar
  24. 24.
    Pardo, A., Merion, M.C., Carboneras, M., et al., Corros. Sci., 2006, vol. 48, p. 1075.CrossRefGoogle Scholar
  25. 25.
    Reartes, G.B., Morando, P.J., and Blesa, M.A., Langmuir, 1995, vol. 11, p. 2277.CrossRefGoogle Scholar
  26. 26.
    Pistorius, P.C. and Burstein, G.T., Corros. Sci., 1992, vol. 33, p. 1885.CrossRefGoogle Scholar
  27. 27.
    Flis, J. and Kuczynska, M., J. Electrochem. Soc., 2004, vol. 151, p. B573.CrossRefGoogle Scholar
  28. 28.
    Wu, J.W., Li, X.G., Du, C.W., et al., J. Mater. Sci. Technol., 2005, vol. 21, p. 28.Google Scholar
  29. 29.
    Laitinen, T.M.J., Corrosion, 1999, vol. 55, p. 858.CrossRefGoogle Scholar
  30. 30.
    Kish, J.R., Ives, M.B., and Rodda, J.R., Corros. Sci., 2003, vol. 45, p. 1571.CrossRefGoogle Scholar
  31. 31.
    Hajjaji, S.E., Aries, L., Pebere, N., et al., Corrosion, 1996, vol. 52, p. 865.CrossRefGoogle Scholar
  32. 32.
    Lai, W.Y., Zhao, W.Z., Yin, Z.F., and Zhang, J., Surf. Interface Anal., 2012, vol. 44, p. 505.CrossRefGoogle Scholar
  33. 33.
    Pohjanne, P., Sarpola, A., Carpén, L., et al., Proc. Corrosion Conference and Expo CORROSION 2007-NACE, Nashville, TN, 2007, paper no. 07198.Google Scholar
  34. 34.
    Pujar, M.G., Anita, T., Shaikh, H., et al., J. Mater. Eng. Perform., 2007, vol. 16, p. 494.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical TechnologyBeijingChina
  2. 2.Shanghai Aerospace Equipment Manufacture Co. Ltd.ShanghaiChina

Personalised recommendations