Skip to main content
Log in

Effects of Heat Treatments on the Corrosion Behavior of 13Cr Stainless Steels in Chloride Solutions Containing Carbon Dioxide

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Various electrochemical measurements were adopted to explore the effects of heat treatments on the corrosion resistance of 13Cr martensitic stainless steels in Cl solutions containing carbon dioxide. Phase contents and lattice strains were measured by Matlab image processing and X-ray diffraction, respectively. The compositions of passive film were tested by X-ray photoelectron spectroscopy. The results showed that the enhancement of austenitized temperature can improve the pitting resistance, whereas uniform corrosion resistance can be injured by the formation of retained austenite. The quenched specimen exhibited enhanced passivation stability in long-term immersion tests. Tempering at 280°C as the optimum process can guarantee 13Cr stainless steel a refined microstructure with reasonable internal stress and easy to obtain an intact protective passive film, which can serviced in complicated CO2 and Cl corrosion environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Moiseeva, L.S., Prot. Met., 2005, vol. 41, p. 76.

    Article  Google Scholar 

  2. Popov, Yu.A., Saha, S., and Mouhammad, S., Prot. Met., 2000, vol. 36, p. 146.

    Article  Google Scholar 

  3. Ma, X.P., Wang, L.J., Liu, C.M., and Subramanian, S.V., Mater. Sci. Eng., A, 2012, vol. 271, p. 539.

    Google Scholar 

  4. Lin, Y.L., Lin, C.C., Tsai, T.H., and Lai, H.J., Mater. Manuf. Processes, 2010, vol. 246, p. 25.

    Google Scholar 

  5. Park, J.Y. and Park, Y.S., Mater. Sci. Eng., A, 2007, vol. 1131, pp. 449–451.

    Google Scholar 

  6. Garcia de Andres, C., Caruana, G., and Alvarez, L.F., Mater. Sci. Eng., A, 1998, vol. 211, p. 241.

    Google Scholar 

  7. Tsai, M.C., Chiou, C.S., Du, J.S., and Yang, J.R., Mater. Sci. Eng., A, 2002, vol. 1, p. 332.

    Google Scholar 

  8. Xu, L.Q., Yan, Z.S., Liu, Y.C., Li, H.J., Ning, B.Q., and Qiao, Z.X., J. Mater. Res., 2013, vol. 2835, p. 28.

    Google Scholar 

  9. Song, Y.Y., Ping, D.H., Yin, F.X., Li, X.Y., Li, Y.Y., Mater. Sci. Eng., A, 2010, vol. 614, p. 527.

    Google Scholar 

  10. Xu, L.Q., Zhang, D.T., Liu, Y.C., Ning, B.Q., Qiao, Z.X., Yan, Z.S., and Li, H.J., J. Mater. Res., 2013, vol. 1529, p. 28.

    Google Scholar 

  11. Buytoz, S., Mater. Lett., 2006, vol. 605, p. 60.

    Google Scholar 

  12. Ernst, F., Li, D.Q., Kahn, H., Michal, G.M., and Heuer, A.H., Acta Mater., 2011, vol. 2268, p. 59.

    Google Scholar 

  13. Nakagawa, H. and Miyazaki, T., J. Mater. Sci., 1999, vol. 3901, p. 34.

    Google Scholar 

  14. Conde, A. and Damborenea, J., Corros. Sci., 2000, vol. 1363, p. 42.

    Google Scholar 

  15. Wang, Y., Jiang, S.L., Zheng, Y.G., Ke, W., Sun, W.H., and Wang, J.Q., Surf. Coat. Technol., 2011, vol. 1307, p. 206.

    Google Scholar 

  16. Isfahany, A.N., Saghafian, H., and Borhani, G., J. Alloys Compd., 2011, vol. 3931, p. 509.

    Google Scholar 

  17. Xiong, X.C., Chen, B., Huang, M.X., Wang, J.F., and Wang, L., Scr. Mater., 2013, vol. 321, p. 68.

    Google Scholar 

  18. Behbahani, K.M. and Pakshir, M., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 1027.

    Article  Google Scholar 

  19. Alvarez, L.F., Garcia, C., and Lopez, V., ISIJ Int., 1994, vol. 516, p. 34.

    Google Scholar 

  20. Xiang, X., Chen, C.A., and Jiang, C.L., Rare Met. Mater. Eng., 2011, vol. 1610, p. 40.

    Google Scholar 

  21. Nakagawa, H. and Miyazaki, T., J. Mater. Sci., 1999, vol. 3901, p. 34.

    Google Scholar 

  22. Wang, Y., Zheng, Y.G., Ke, W., Sun, W.H., Hou, W.L., Chang, X.C., and Wang, J.Q., Corros. Sci., 2011, vol. 3177, p. 53.

    Google Scholar 

  23. Ju, P.F., Zuo, Y., Tang, Y.M., and Zhao, X.H., Corros. Sci., 2013, vol. 330, p. 66.

    Google Scholar 

  24. Pedraza, F., Roman, E., Cristobal, M.J., Hierro, M.P., and Perez, F.J., Thin Solid Films, 2002, vol. 231, p. 414.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the assisted project by Heilong Jiang Postdoctoral Funds for scientific research initiation(LBH-Q16036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Wang or X. Y. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L.L., Gao, M.H., Wang, Y. et al. Effects of Heat Treatments on the Corrosion Behavior of 13Cr Stainless Steels in Chloride Solutions Containing Carbon Dioxide. Prot Met Phys Chem Surf 55, 157–165 (2019). https://doi.org/10.1134/S2070205119010234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010234

Keywords:

Navigation