Skip to main content
Log in

Computer Simulation of Water Vapor Adsorption on the Surface of a Crystal β-AgI Regular Shape Nanoparticle

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The Gibbs free energy and water vapor adsorption isotherms on the surface of a silver iodide nanoparticle at a temperature of 260 K have been calculated via the bicanonical statistic ensemble at the molecular level. The profiles of dependences reveal the capability of a surface to retain microdroplets in water vapors, as well as evidencing the condensation scenario of the formation of the contact between the dense phase and the solid surface as the most feasible way of heterogeneous nucleation under atmospheric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 170.

    Article  Google Scholar 

  2. Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 291.

    Article  Google Scholar 

  3. Simonov, V.N., Krasil’nikova, O.K., Khozina, E.V., and Zolotarevskii, V.I., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 363.

    Article  Google Scholar 

  4. Denisov, S.A., Sokolina, G.A., Grankina, T.Y., Krasil’nikova, O.K., Plotnikova, E.V., Spitsyn, B.V., and Bogatyreva, G.P., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 286.

    Article  Google Scholar 

  5. Tolmachev, A.M., Kryuchenkova, N.G., Anuchin, K.M., and Fomkin, A.A., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 150.

    Article  Google Scholar 

  6. Kittel, Ch., Thermal Physics, New York: John Wiley and Sons, 1969.

    Google Scholar 

  7. Tarasevich, Yu.G., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 607.

    Article  Google Scholar 

  8. Vigdorovich, V.I. and Tsygankova, L.E., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 501.

    Article  Google Scholar 

  9. Breed, D., Rasmussen, R., Weeks, C., Boe, B., and Deshler, T., J. Appl. Meteorol. Climatol., 2014, vol. 53, no. 2, p. 282.

    Article  Google Scholar 

  10. Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., Kim, N.S., and Shkodkin, A.V., in Trudy Ukrainskogo regional’nogo nauchno-issledovatel’skogo gidrometeorologicheskogo instituta (Scientific Works of Ukrainian Regional Hydrometeorological Institute), Bakhanova, R.A. and Osokina, I.N., Eds., Moscow: Gidrometeoizdat, 1991, issue 242, p. 102.

  11. Vlasyuk, M.P., Zmitrovich, V.Yu., Khvan, S.B., Seregin, Yu.A., Sidorov, A.I., and Serogodskii, A.V., Trudy Vsesoyuznoi konferentsii “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” Nal’chik, Oktyabr’ 22–25, 1991 (Proc. All-Union Conference “Active Impacts onto Hydrometeorological Processes”, Nalchik, October 22–25, 1991), St. Petersburg: Gidrometeoizdat, 1995, part 2, p. 231.

  12. Timofeev, N.E., Madyakin, F.P., Arutyunyan, A.S., Salin, V.N., Plaude, N.O., and Kim, N.S., Trudy Vsesoyuznogo seminara “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” Nal’chik, Oktyabr’ 16–21, 1989 (Proc. All-Union Seminar “Active Impacts onto Hail Processes and Trends for Improving Ice-Forming Agents for Practice of Active Impacts”, Nalchik, October 16–21, 1989), Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 224.

  13. Timofeev, N.E., L’doobrazuyushchie pirotekhnicheskie sostavy i sredstva (Ice-Forming Pyrotechnic Compositions and Means), Kazan: Kazan State Technological Univ., 1995.

  14. Turov, A.V., Arkharov, A.V., Kolomiets, N.A., Udamenko, V.V., and Oleksenko, L.P., Trudy Vsesoyuznogo seminara “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” Nal’chik, Oktyabr’ 16–21, 1989 (Proc. All-Union Seminar “Active Impacts onto Hail Processes and Trends for Improving Ice-Forming Agents for Practice of Active Impacts”, Nalchik, October 16–21, 1989), Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 190.

  15. Vlasov, S.A. and Dovgalyuk, Yu.A., Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1988, no. 517, p. 124.

  16. Prikhot’ko, G.F., Iskusstvennye osadki iz konvektivnykh oblakov (Artificial Rainfalls from Convective Clouds), Leningrad: Gidrometeoizdat, 1968.

  17. Arnett, D., Weather Modification by Cloud Seeding, New York: Academic Press, 1980.

    Google Scholar 

  18. Shevkunov, S.V., Dokl. Phys., 2011, vol. 56, no. 6, p. 323.

    Article  Google Scholar 

  19. Vonnegut, B. and Baldwin, M., J. Clim. Appl. Meteorol., 1984, vol. 23, no. 3, p. 486.

    Article  Google Scholar 

  20. DeMott, P., J. Atmos. Res., 1995, vol. 38, nos. 1–4, p. 63.

    Article  Google Scholar 

  21. Zobrist, B., Koop, T., Marcolli, C., and Peter, T., J. Phys. Chem. A, 2008, vol. 112, no. 17, p. 3965.

    Article  Google Scholar 

  22. Fraux, G. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, no. 21, p. 216101.

    Article  Google Scholar 

  23. Zielke, S.A., Bertram, A.K., and Patey, G.N., J. Phys. Chem. B, 2015, vol. 119, no. 29, p. 9049.

    Article  Google Scholar 

  24. Moreno, L.A.L., Stetzer, O., and Lohmann, U., Atmos. Chem. Phys., 2013, vol. 13, no. 19, p. 9745.

    Article  Google Scholar 

  25. Vali, G., DeMott, P.J., Möhler, O., and Whale, T.F., Atmos. Chem. Phys., 2015, vol. 15, no. 18, p. 10263.

    Article  Google Scholar 

  26. Djikaev, Y.S. and Ruckenstein, E.J., J. Phys. Chem. A, 2008, vol. 112, no. 46, p. 11677.

    Article  Google Scholar 

  27. Cox, S.J., Kathmann, Sh.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184704.

    Article  Google Scholar 

  28. Tolmachev, A.M., Fomenkov, P.E., Kryuchenkova, N.G., Firsov, D.A., and Anuchin, K.M., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 215.

    Article  Google Scholar 

  29. Kudryashov, S.Y., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 57.

    Article  Google Scholar 

  30. Shevkunov, S.V., Kolloidn. Zh., 1983, vol. 45, no. 5, p. 1019.

    Google Scholar 

  31. Shevkunov, S.V., Martsinovski, A.A., and Vorontsov-Velyaminov, P.N., Mol. Simul., 1990, vol. 5, nos. 3–4, p. 119.

    Article  Google Scholar 

  32. Shevkunov, S.V., J. Exp. Theor. Phys., 2001, vol. 92, p. 420.

    Article  Google Scholar 

  33. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct.: THEOCHEM, 2003, vol. 623, nos. 1–3, p. 221.

    Article  Google Scholar 

  34. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, no. 1, p. 34.

    Article  Google Scholar 

  35. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, nos. 2–3, p. 188.

    Article  Google Scholar 

  36. Shevkunov, S.V. Colloid J., 2016, vol. 78, p. 137.

    Article  Google Scholar 

  37. Spravochnik khimika (Handbook for Chemist), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, p. 404.

  38. Wang, Ch., Lu, H., Wang, Zh., Xiu, P., Zhou, B., Zuo, G., Wan, R., Hu, J., and Fang, H., Phys. Rev. Lett., 2009, vol. 103, p. 137801.

    Article  Google Scholar 

  39. Hale, B.N. and Kiefer, J., J. Chem. Phys., 1980, vol. 73, no. 2, p. 923.

    Article  Google Scholar 

  40. Shevkunov, S.V., Colloid J., 2005, vol. 67, no. 4, p. 497.

    Article  Google Scholar 

  41. Shevkunov, S.V., J. Exp. Theor. Phys., 2008, vol. 107, p. 965.

    Article  Google Scholar 

  42. Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 608.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Education of the Russian Federation (project no. 3.4808.2017/6.7) and by the Russian Foundation for Basic Research (project no. 18-03-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Computer Simulation of Water Vapor Adsorption on the Surface of a Crystal β-AgI Regular Shape Nanoparticle. Prot Met Phys Chem Surf 55, 41–49 (2019). https://doi.org/10.1134/S2070205119010222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010222

Navigation