Skip to main content
Log in

Investigation of Corrosiveness Biodiesel Blends Using Polypyrrole Chitosan-Cobalt/Ferrite Nanocomposite

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosiveness of palm oil biodiesel blends was measured using surface plasmon resonance with polypyrrole chitosan cobalt ferrite nanoparticles sensing layers. Diesel fuel which is relatively corrosive and lower flash point is often mixed with biodiesel of low corrosiveness and higher flash point. Biodiesel blend fuels were prepared from the mixture of normal palm oil biodiesel and diesel fuel where the percentage of the mixture was in the range of 10–90%. The corrosiveness of all the samples was in the class 1a according to the standard copper strip test, but the concentrations of copper and iron ion that were released in biodiesel blend were distinctly different. In this article, the corrosiveness of biodiesel blend was investigated using surface plasmon resonance from the measurement the concentration of copper and iron ions. The corrosiveness of biodiesel blends consistently decreased with increasing the concentration of biodiesel. Moreover, the sensitivity of polypyrrole chitosan /cobalt ferrite and polypyrrole chitosan sensing layer was compared. Consequently, the polypyrrole chitosan cobalt ferrites have sensitivity higher than polypyrrole chitosan sensing layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Alptekin, E. and Canakci, M.M., Renewable Energy, 2008, vol. 33, pp. 2623–2630.

    Article  Google Scholar 

  2. Encinar, J.M., Gonzalez, J.F., and Rodriquez, R.A., Ind. Eng. Chem. Res., 2005, vol. 44, pp. 5491–5499.

    Article  Google Scholar 

  3. Klaas, M., Pischinger, S., and Schröder, W., Fuels from Biomass: An Interdisciplinary Approach, Aachen: Springer, 2011.

    Google Scholar 

  4. Knothe, G., Fuel Process. Technol., 2005, vol. 86, pp. 1059–1070.

    Article  Google Scholar 

  5. Jones, J.M., Lea-Langton, A.R., Ma, L., Pourkashanian, M., and Williams, A., Pollutants Generated by the Combustion of Solid Biomass Fuels, London: Springer, 2014.

    Book  Google Scholar 

  6. Gerpen, J.V., Fuel Process. Technol., 2005, vol. 86, pp. 1097–1107.

    Article  Google Scholar 

  7. Monyem, A., Canakci, M., and Gerpen, J.V., Appl. Eng. Agric., 2000, vol. 16, pp. 373–378.

    Article  Google Scholar 

  8. Dwivedi, G. and Sharma, M.P., Renewable Sustainable Energy Rev., 2014, vol. 31, pp. 650–656.

    Article  Google Scholar 

  9. Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., and Knothe, G., Biodiesel Analytical Methods, Golden, CO: National Renewable Energy Laboratory, 2004.

    Google Scholar 

  10. Sadrolhosseini, A.R., Moksin, M.M., and Harrison, L.L.N., Int. J. Mol. Sci., 2011, vol. 11, pp. 2100–2111.

    Article  Google Scholar 

  11. Sadrolhosseini, A.R., Moksin, M.M., and Mat Yunus, W.M., J. Mater. Sci. Eng., 2011, vol. 5, pp. 550–554.

    Google Scholar 

  12. Abdi, M., Kassim, A.M., Mahmud, H.N., and Mat Yunus, W.M., J. Mater. Sci., 2009, vol. 44, pp. 3682–3686.

    Article  Google Scholar 

  13. Naseri, M.G., Saion, E.B., and Abbastabar, A.H., J. Nanomater., 2010, vol. 2010, p. 907686.

    Google Scholar 

  14. Sadrolhosseini, A.R., Naseri, M., and Kamari, H.M., Opt. Commun., 2017, vol. 383, pp. 132–137.

    Article  Google Scholar 

  15. Yu, J.C.C., Lai, E.P.C., and Sadeghi, S., Sens. Actuators, B, 2004, vol. 101, pp. 236–241.

    Article  Google Scholar 

  16. Sadrolhosseini, A.R., Moksin, M.M., and Mat Yunus, W.M., Opt. Rev., 2011, vol. 18, pp. 331–337.

    Article  Google Scholar 

  17. Chah, S., Yi, J., and Zare, R.N., Sens. Actuators, B, 2004, vol. 99, pp. 216–222.

    Article  Google Scholar 

  18. Schasfoort, R.B.M. and Tudos, A.J., Handbook of Surface Plasmon Resonance, Cambridge: RSC Publ., 2008.

    Book  Google Scholar 

  19. Fang, H., Jun, Yu.K., and Gloschat, C., Nat. Biomed. Eng., 2017, vol. 1, no. 3, p. 0038. https://doi.org/10.1038/s41551-017-0038

  20. Sadrolhosseini, A.R., Naseri, M., and Halimah, M.K., Chin. Phys. Lett., 2017, vol. 34, no. 5, p. 057501. https://doi.org/10.1088/0256-307X/34/5/057501

    Article  Google Scholar 

  21. Sadrolhosseini, A.R., Naseri, M., and Abdul Rashid, S., Opt. Laser Technol., 2017, vol. 93, pp. 216–223.

    Article  Google Scholar 

  22. Forzani, E.S., Zhang, H.W., Chen, W., and Tao, N., Environ. Sci. Technol., 2005, vol. 39, pp. 1257–1262.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Higher Education of Malaysia and Malayer University of Iran under the FRGS grant and Universiti Putra Malaysia under the RUGS grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Reza Sadrolhosseini or Mahmoud Naseri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir Reza Sadrolhosseini, Mahmoud Naseri Investigation of Corrosiveness Biodiesel Blends Using Polypyrrole Chitosan-Cobalt/Ferrite Nanocomposite. Prot Met Phys Chem Surf 55, 72–79 (2019). https://doi.org/10.1134/S2070205119010179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010179

Keyword:

Navigation