Skip to main content
Log in

Photoelectrochemical Activity of Nanosized Titania, Doped with Bismuth and Lead, in Visible Light Region

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A method for the preparation of film coatings of titania doped with bismuth (Bi3+) and lead (Pb2+) ions, separately and simultaneously, has been developed based on sol–gel synthesis. According to X-ray phase analysis, the films represent a single-phase system of titania in anatase modification. It has been shown that doping of titania with bismuth and lead leads to a shift of the absorption maximum to the visible light region; in this case, the largest shift is observed in the sample containing 2.5 wt % bismuth and lead. The film coatings have been studied as catalysts of photoelectrooxidation of methanol, formic acid, and phenol. It has been shown that the highest catalytic effect is observed for the samples containing simultaneously bismuth and lead; however, doping of titania with bismuth has the greatest effect on the rate of organic substrates oxidation. It has been assumed that photoelectrochemical oxidation of the model systems with visible light is due to a decrease in the band gap of doped titania to 2.7 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Chen, X.B. and Mao, S.S., Chem. Rev., 2007, vol. 107, p. 2891.

    Article  Google Scholar 

  2. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, p. 37.

    Article  Google Scholar 

  3. Yu, J.G., Fan, J.J., and Lü, K.L., Nanoscale, 2010, vol. 2, p. 2144.

    Article  Google Scholar 

  4. Yu, J.G., Fan, J.J., and Zhao, L., Electrochim. Acta, 2010, vol. 55, p. 597.

    Article  Google Scholar 

  5. Yu, J.G., Li, Q.L., and Shu, Z., Electrochim. Acta, 2011, vol. 56, p. 6293.

    Article  Google Scholar 

  6. Xu, J., Wang, G.X., Fan, J.J., Liu, B.S., Cao, S.W., and Yu, J.G., J. Power Sources, 2015, vol. 274, p. 77.

    Article  Google Scholar 

  7. O'Regan, B. and Gratzel, M., Nature, 1991, vol. 353, p. 737.

    Article  Google Scholar 

  8. Bai, Y., Mora-Seró, I., De Angelis, F., Bisquert, J., and Wang, P., Chem. Rev., 2014, vol. 114, p. 10095.

    Article  Google Scholar 

  9. Bai, J. and Zhou, B.X., Chem. Rev., 2014, vol. 114, p. 10131.

    Article  Google Scholar 

  10. Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K., Renewable Sustainable Energy Rev., 2007, vol. 11, p. 401.

    Article  Google Scholar 

  11. Ma, Y., Wang, X.L., Jia, Y.Y., Chen, X.B., Han, H.X., and Li, C., Chem. Rev., 2014, vol. 114, p. 9987.

    Article  Google Scholar 

  12. Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B., J. Mater. Chem. A, 2015, vol. 3, p. 2485.

    Article  Google Scholar 

  13. Chen, X.B., Shen, S.H., Guo, L.J., and Mao, S.S., Chem. Rev., 2010, vol. 110, p. 6503.

    Article  Google Scholar 

  14. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., and Lewis, N.S., Chem. Rev., 2010, vol. 110, p. 6446.

    Article  Google Scholar 

  15. Fujishima, A., Zhang, X.T., and Tryk, D.A., Int. J. Hydrogen Energy, 2007, vol. 32, p. 2664.

    Article  Google Scholar 

  16. Kudo, A. and Miseki, Y., Chem. Soc. Rev., 2009, vol. 38, p. 253.

    Article  Google Scholar 

  17. Maeda, K., J. Photochem. Photobiol., C, 2011, vol. 12, p. 237.

    Article  Google Scholar 

  18. Han, F., Kambala, V.S.R., Srinivasan, M., Rajarathnam, D., and Naidu, R., Appl. Catal., A, 2009, vol. 359, p. 25.

  19. Konstantinou, I.K. and Albanis, T.A., Appl. Catal., B, 2004, vol. 49, p. 1.

    Article  Google Scholar 

  20. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’Shea, K., Entezari, M.H., and Dionysiou, D.D., Appl. Catal., B, 2012, vol. 125, p. 331.

    Article  Google Scholar 

  21. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., Chem. Rev., 1995, vol. 95, p. 69.

    Article  Google Scholar 

  22. Akpan, U.G. and Hameed, B.H., J. Hazard. Mater., 2009, vol. 170, p. 520.

    Article  Google Scholar 

  23. Fujishima, A., Rao, T.W., and Tryk, D.A., J. Photochem. Photobiol., C, 2000, vol. 1, p. 1.

    Article  Google Scholar 

  24. Chen, C.C., Ma, W.H., and Zhao, J.C., Chem. Soc. Rev., 2010, vol. 39, p. 4206.

    Article  Google Scholar 

  25. Park, H., Park, Y., Kim, W., and Choi, W., J. Photochem. Photobiol., C, 2013, vol. 15, p. 1.

    Article  Google Scholar 

  26. Shiraishi, Y. and Hirai, T., J. Photochem. Photobiol., C, 2008, vol. 9, p. 157.

    Article  Google Scholar 

  27. Linsebigler, A.L., Lu, G.Q., and Yates, J.T., Jr., Chem. Rev., 1995, vol. 95, p. 735.

    Article  Google Scholar 

  28. Xu, Q.L., Yu, J.G., Zhang, J., Zhang, J.F., and Liu, G., Chem. Commun., 2015, vol. 51, p. 7950.

    Article  Google Scholar 

  29. Yu, J.G., Low, J.X., Xiao, W., Zhou, P., and Jaroniec, M., J. Am. Chem. Soc., 2014, vol. 136, p. 8839.

    Article  Google Scholar 

  30. Li, X., Wen, J.Q., Low, J.X., Fang, Y.P., and Yu, J.G., Sci. China Mater., 2014, vol. 57, p. 70.

    Article  Google Scholar 

  31. Fu, J.W., Cao, S.W., Yu, J.G., Low, J.X., and Lei, Y.P., Dalton Trans., 2014, vol. 43, p. 9158.

    Article  Google Scholar 

  32. Li, X., Liu, H.L., Luo, D.L., Li, J.T., Huang, Y., Li, H.L., Fang, Y.P., Xu, Y.H., and Zhu, L., Chem. Eng. J., 2012, vol. 180, p. 151.

    Article  Google Scholar 

  33. Dhakshinamoorthy, A., Navalon, S., Corma, A., and Garcia, H., Energy Environ. Sci., 2012, vol. 5, p. 9217.

    Article  Google Scholar 

  34. Zhang, Q.H., Han, W.D., Hong, Y.J., and Yu, J.G., Catal. Today, 2009, vol. 148, p. 335.

    Article  Google Scholar 

  35. Hemminger, J.C., Carr, R., and Somorjai, G.A., Chem. Phys. Lett., 1978, vol. 57, p. 100.

    Article  Google Scholar 

  36. Inoue, T., Fujishima, A., Konish, S., and Honda, K., Nature, 1979, vol. 227, p. 637.

    Article  Google Scholar 

  37. Hirano, K. and Bard, A.J.Z., J. Electrochem. Soc., 1980, vol. 127, p. 1056.

    Article  Google Scholar 

  38. Reiche, H. and Bard, A.J., J. Am. Chem. Soc., 1979, vol. 101, p. 3127.

    Article  Google Scholar 

  39. Kanno, T., Oguchi, T., Sakuragi, H., and Tokumaru, K., Tetrahedron Lett., 1980, vol. 21, p. 467.

    Article  Google Scholar 

  40. Taniguchi, I., Nakashima, K., Yamaguchi, H., and Yasukouchi, K., J. Electroanal. Chem., 1982, vol. 134, p. 191.

    Article  Google Scholar 

  41. Pleskov, Yu.V., Elektrokhimiya, 1981, vol. 17, p. 3.

    Google Scholar 

  42. Grinberg, V.A., Dzhavrishvili, T.V., Vasil’ev, Yu.B., Rotenberg, Z.A., Kazarinov, V.E., and Maiorova, N.A., Elektrokhimiya, 1984, vol. 20, no. 1, p. 121.

    Google Scholar 

  43. Gurevich, Yu.Ya. and Pleskov, Yu.V., Itogi Nauki Tekh., Ser.: Elektrokhim., 1982, vol. 18, pp. 3–189.

    Google Scholar 

  44. Mills, A. and Le Hunte, S., J. Photochem. Photobiol., A, 1997, vol. 108, p. 1.

    Article  Google Scholar 

  45. Mills, A. and Lee, S.K., J. Photochem. Photobiol., A, 2002, vol. 152, p. 233.

    Article  Google Scholar 

  46. Anpo, M. and Takeuchi, M., J. Catal., 2003, vol. 216, p. 505.

    Article  Google Scholar 

  47. Antoniadou, M. and Lianos, P., J. Nanosci. Nanotechnol., 2010, vol. 10, p. 6240.

    Article  Google Scholar 

  48. Li, L., Zhang, S., Li, G., and Zhao, H., Anal. Chim. Acta, 2012, vol. 754, p. 47.

    Article  Google Scholar 

  49. Grinberg, V.A., Emets, V.V., Modestov, A.D., Maiorova, N.A., Ovsyannikova, E.V., Bukhtenko, O.V., and Maslov, D.A., Russ. J. Electrochem., 2017, vol. 53, no. 2, p. 217.

    Article  Google Scholar 

  50. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y., Chin. J. Catal., 2015, vol. 36, p. 2049.

    Article  Google Scholar 

  51. Su, R., Bechstein, R., Kibsgaard, J., Vang, R.T., and Besenbacher, F., J. Mater. Chem., 2012, vol. 22, p. 23755.

    Article  Google Scholar 

  52. Tu, Y.F., Huang, S.Y., Sang, J.P., and Zou, X.W., Mater. Res. Bull., 2010, vol. 45, p. 224.

    Article  Google Scholar 

  53. Grinberg, V.A., Emets, V.V., Maiorova, N.A., Averin, A.A., Bukhtenko, O.V., and Maslov, D.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 51.

    Article  Google Scholar 

  54. Baifu Xin, Liqiang Jing, Zhiyu Ren, Baiqi Wang, and Honggang Fu, J. Phys. Chem., 2005, vol. 109, p. 2805.

    Article  Google Scholar 

  55. Sajjad, S., Leghari, S.A.K., Chen, F., and Zhang, J., Chem. - Eur. J., 2010, vol. 16, p. 13795.

    Article  Google Scholar 

  56. Andronic, L., Enesca, A., Vladuta, C., and Duta, A., Chem. Eng. J., 2009, vol. 152, p. 64.

    Article  Google Scholar 

  57. Hajjaji, A., Atyaoui, A., Trabelsi, K., et al., Am. J. Anal. Chem., 2014, vol. 5, p. 473.

    Article  Google Scholar 

  58. Hoang, S., Berglund, S.P., Hahn, N.T., Bard, A.J., and Mullins, C.B., J. Am. Chem. Soc., 2012, vol. 134, p. 3659.

    Article  Google Scholar 

  59. Hoang, S., Guo, S.W., Hahn, N.T., Bard, A.J., and Mullins, C.B., Nano Lett., 2011, vol. 12, p. 26.

    Article  Google Scholar 

  60. Wang, G.M., Wang, H.Y., Ling, Y.C., Tang, Y.C., Yang, X.Y., Fitzmorris, R.C., Wang, C.C., Zhang, J.Z., and Li, Y., Nano Lett., 2011, vol. 11, p. 3026.

    Article  Google Scholar 

  61. Lianos, P., J. Hazard. Mater., 2011, vol. 185, p. 575.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The absorption spectra of nanosized titania films doped with bismuth and lead were measured on the equipment of the Center for Collective Use of Physical Investigation Methods of the IPCE RAS.

This work was performed partially according to the State Task for 2019 IPCE RAS and supported by the Program of Fundamental Studies of the Presidium of the Russian Academy of Sciences 1.8 P “Fundamental Aspects of the Chemistry of Carbon Energetics” and partially by the State Task Theme 47.23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grinberg.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinberg, V.A., Emets, V.V., Maiorova, N.A. et al. Photoelectrochemical Activity of Nanosized Titania, Doped with Bismuth and Lead, in Visible Light Region. Prot Met Phys Chem Surf 55, 55–64 (2019). https://doi.org/10.1134/S207020511901012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511901012X

Keywords:

Navigation